簡易檢索 / 詳目顯示

研究生: 程立偉
Li-Wei Cheng
論文名稱: 鎳矽化物薄膜在矽晶上生成與熱穩定性研究
The Study of Formation and Thermal Stability of Nickel Silicides Thin Films on Silicon
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 英文
論文頁數: 102
中文關鍵詞: 鎳矽化物
外文關鍵詞: Nickel Silicides
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來金屬矽化物(silicide)已被廣泛應用在半導體工業上,由於NiSi具有許多優點,所以極有可能在未來用來取代TiSi2。除了有低電阻的優點外,其消耗矽的量也很低。當元件尺寸縮小時,其接面電阻並不會隨著線寬下降而上升,這使得NiSi在未來元件上的應用性大增。同時NiSi也具有較低的蕭基能障(電洞)。另外由於製程技術上的要求與改進,低熱預算、低溫製程已經是未來的趨勢及要求。而NiSi具有較低的生成溫度,且亦不像TiSi2有相轉換的問題,故可以使用單次快速熱退火在低溫下(約400℃)來生成NiSi。然而由熱力學的觀點來說,NiSi在矽基材上屬於不穩定的介穩相,當退火溫度高於750℃,便會轉成穩定的NiSi2,但是因為NiSi2具有高電阻,所以並不適用在製程上。由此觀之,如何擴大NiSi的製程穩定溫度成為當前值得探討的重要課題。
    本論文主要是利用電子顯微鏡、歐傑電子能譜儀、二次離子質譜儀、X光繞射儀及四點探針來探討氮離子佈植、鉑金屬夾層、應力及小尺寸接觸開口對鎳矽化物生成及其熱穩定性的影響。實驗結果顯示所佈植的氮離子、鉑金屬夾層能抑制鎳原子的擴散,進而延緩鎳矽化物的相轉換。此外,張應力會促進鎳矽化物的生成,而壓應力會延緩鎳矽化物的相轉換。在小尺寸接觸開口中,即使在400℃的低溫下高電阻的NiSi2也會提前生成,然而利用鉑金屬夾層可以使低電阻NiSi的之熱穩定性大幅提昇,增加其在下一世代元件上應用的可能性。


    The formation and thermal stability of nickel silicides on blank and patterned (001)Si have been studied by sheet resistance measurement, secondary ion mass spectroscopy (SIMS), transmission and scanning electron microscopy (TEM and SEM), glancing incidence x-ray diffractometry (GIXRD), high-resolution transmission electron microscopy (HRTEM) and Auger electron spectroscopy (AES).
    The formation of nickel disilicides on nitrogen implanted (001)Si was suppressed and shifted to a higher temperature by 50-100 0C. The sheet resistance was found to be nearly constant in a wide range of temperatures in nitrogen ion implanted samples. The diffusion of nickel atoms is thought to be retarded by the presence of nitrogen atoms. The presence of nitrogen ion can also improve the thermal stability of nickel disilicide. The effects of nitrogen on nickel silicide formation become more pronounced with increasing nitrogen dose.

    Compressive stress induced by backside SiO2 film on the silicon substrate was found to retard significantly the formation of Ni2Si, NiSi and NiSi2 on (001)Si. On the other hand, tensile stress induced by backside Si3N4 and CoSi2 films was found to enhance the formation of nickel silicides on (001)Si. The thickness of growing nickel silicide thin films was found to increase and decrease with tensile and compressive stress level, respectively. The results indicated that the diffusion of nickel atoms through Ni/Si and nickel silicide/Si interfaces is facilitated and retarded by the tensile and compressive stress, respectively.

    NiSi was observed to be the only silicide phase for the samples annealed at 500-800 0C with a thin interposing Pt layer. The sheet resistance maintained the same low level in a wide temperature range. Pt addition was found to retard significantly the formation of nickel silicides and enhance the thermal stability of NiSi thin films on (001)Si. For Ni (30 nm)/Pt(1.5 nm)/(001)Si, the process window of NiSi was extended to 500-800 0C. The effects of interposing Pt layer become more pronounced with an increase in the thickness of Pt layer. In patterned (001)Si, epitaxial NiSi2 was found to grow at annealing temperature as low as 400 0C. In contrast, for Ni (30 nm)/Pt(1.5 nm)/patterned (001)Si, the process window of NiSi was extended to 400-750 0C.

    Chapter 1 Introduction 1-1 Development of Metal Silicides in USLI 1 1-2 Nitrogen Ion Implantation 3 1-3 Stress 5 1-4 Properties of Metal Silicides 9 1-5 Effects of Lateral Confinement on the Formation of Metal silicides 15 1-6 Scope and Aim of the Thesis 17 Chapter 2 Experimental Procedures 18 2-1 Initial Wafer Cleaning 2-2 Patterned Wafers Preparation 18 2-3 Ion Implantation 18 2-4 Preparation of Stressed Samples 19 2-5 Stress Measurement 20 2-6 Deposition of Thin Metal Films 21 2-7 Thermal Annealing and Selective Etching 21 2-8 Sheet Resistance Measurement 22 2-9 Glancing Incidence XRD (GIXRD) Analysis 23 2-10 Scanning Electron Microscope (SEM) Observation 23 2-11 Transmission Electron Microscope (TEM) Observation 24 2-12 Energy Dispersion Spectrometer (EDS) Analysis 24 2-13 Auger Electron Spectroscopy (AES) 25 2-14 Secondary Ion Mass Spectroscopy (SIMS) 25 Chapter 3 Effects of Nitrogen Ion Implantation on the Formation of Nickel Silicide Contacts on Shallow Junctions 3-1 Motivation 27 3-2 Experimental Procedures 28 3-3 Results and Discussion 29 3-4 Summary and Conclusions 34 Chapter 4 Effects of Stress on the Formation and Growth of Nickel Silicides in Ni Thin Films on (001)Si 4-1 Motivation 35 4-2 Experimental Procedures 36 4-3 Results and Discussion 36 4-4 Summary and Conclusions 41 Chapter 5 Formation of Ni-silicides on (001)Si with a Thin Interposing Pt Layer 5-2 Experimental Procedures 45 5-3 Results and Discussion 46 5-4 Summary and Conclusions 52 Chapter 6 Formation of Ni-silicides on (001)Si with a Thin Interposing Pt Layer inside Miniature-size Oxide Openings by Rapid Thermal Annealing 6-1 Motivation 54 6-2 Experimental Procedures 55 6-3 Results and Discussion 56 6-4 Summary and Conclusions 59 Chapter 7 Summary and Conclusions 7-1 Effects of Nitrogen Ion Implantation on the Formation of Nickel Silicide Contacts on Shallow Junctions 60 7-2 Effects of Stress on the Formation and Growth of Nickel Silicides in Ni Thin Films on (001)Si 60 7-3 Formation of Ni-silicides on (001)Si with a Thin Interposing Pt Layer 61 7-4 Formation of Ni-Silicides on (001)Si inside Miniature-Size Oxide Openings by Rapid Thermal Annealing 62 Chapter 8 Future Prospects 8.1 Ti-capped Ni Salicide Process 63 8.2 High-temperature Sputtered Ni Salicide Process 63 8.3 Effects of Stress and Implantation Dopant on the Formation of Metal Silicides inside Miniature Oxide Openings 64 8.4 Formation of Metal Silicides on Si1-xGex Substrate 64 8.5 Formation of Metal Silicides on Silicon on Insulator (SOI) Substrate 65 8.6 Mechanisms of Formation of Nickel Silicide on (001)Si with a Thin Interposing Pt Layer 65 References 67 Table Captions 84 Tables 85 Figure Captions 97 Figures 98

    Chapter 1
    1.1 S. P. Murarka, "Metals and alloys", in Metallization: Theory and Practice for VLSI and ULSI, p.188, Butterworth-Heinemann, Boston, 1993.
    1.2 H. J. Geipel, N. Hsieh, M. H. Ishaq, C. W. Koburger, and F. R. White, "Composite Silicide Gate Electrodes-Interconnections for VLSI Device Technologies", IEEE Trans. Electron device, ED-27 (1980) 1417-1424.
    1.3 T. Mochizuki, T. Tsujimaru, M. Kashiwagi, and Y. Nishi, "Film Properties of MoSi2 and Their Application to Self-Aligned MoSi2 Gate MOSFET", IEEE Trans. Electron device, ED-27 (1980) 1431 -1435.
    1.4 A. K. Sinha, W. S. Lindenberger, D. B. Fraser, S. P. Murarka, and E. N. Fuls, "MOS Compatibility of High-Conductivity TaSi2/n+ Poly-Si Gates", IEEE Trans. Electron device, ED-27 (1980) 1425-1430.
    1.5 T. Shibata, K. Hieda, M. Sato, M. Konaka, R. L. M. Dang, and H. Iizuka, "An Optimally Designed Process for Submicron MOSFETs", IEEE IEDM Techn. Dig. (1981) 647-650.
    1.6 C. Y. Ting, G. J. Hu, S. S. Iyer, C. M. Osburn, and A. M. Schweighart, "The Use of TiSi2 in a Self-aligned Silicide Technology", Proc. of the Electrochem. Soc. Meeting, 129 (1982) C326-C326.
    1.7 C. K. Lau, Y. C. See, D. B. Scott, J. M. Bridges, S. M. Perna, and R. D. Davies, "Titanium Disilicide Self-aligned Source-Drain + Gate Technology", IEEE IEDM Techn. Dig. (1982) 714-717.
    1.8 M. E. Alperin, T. C. Holloway, R. A. Haken, C. D. Gosmeyer, R. V. Karnaugh, and W. D. Parmantie, "Development of the Self-Aligned Silicide Process for VLSI Application", IEEE Trans. Electron Device, ED-32 (1985) 141-149.
    1.9 C. Y. Ting, "Silicides for Contacts and Interconnects", IEEE IEDM Techn. Dig. (1984) 110-113.
    1.10 T. Kuroi, M. Kobayashi, M. Shirahata, Y. Okumura, S. Kusunoki, M. Inuishi, and N. Tsubouchi, "The Impact of Nitrogen Implantation into Highly Doped Polysilicon Gates for Highly Reliable and High-Performance Sub-Quarter-Micron Dual-Gate Complementary Metal-Oxide-Semiconductor", Jpn. J. Appl. Phys. 34 (1995) 771-775.
    1.11 T. Kuroi, T. Yamaguchi, M. Shirahata, Y. Okumura, Y. Kawasaki, M. Inuishi, and N. Tsubouchi, "Novel NICE (Nitrogen Implantation into CMOS Gate Electrode and Source-Drain) Structure for High Reliability and High Performance 0.25 μm Dual Gate CMOS", IEEE IEDM Techn. Dig. (1993) 325-328.
    1.12 T. Kuroi, S. Kusunoki, M. Shirahata, Y. Okumura, M. Kobayashi, M. Inuishi, and N. Tsubouchi, "The Effects of Nitrogen Implantation into p+ Poly-Silicon Gate on Gate Oxide Properties", 1994 Symp. on VLSI Technology Dig. (1994) 107-108.
    1.13 A. Yasuoka, T. Kuroi, S. Shimizu, M. Shirahata, Y. Okumura, Y. Inoue, M. Inuishi, T. Nishimura, and H. Miyoshi, "The Effects on Metal-Oxide-Semiconductor Field-Effect Transistor Properties of Nitrogen Implantation into P(+) Polysilicon Gate", Jpn. J. Appl. Phys. 36 (1997) 617-622.
    1.14 T. Kuroi, S. Shimizu, A. Furukawa, S. Komori, Y. Kawasaki, S. Kusunoki, Y. Okumura, M. Inuishi, N. Tsubouchi, and K. Horie, "Highly Reliable 0.15 mm MOSFETs with Surface Proximity Gettering (SPG) and Nitrided Oxide Spacer Using Nitrogen Implantation", 1995 Symp. on VLSI Technology Dig. (1995) 19-20.
    1.15 S. Shimizu, T. Kuroi, Y. Kawasaki, S. Kusunoki, Y. Okumura, M. Inuishi, and H. Miyoshi, "Impact of Surface Proximity Gettering and Nitrided Oxide Side-Wall Spacer by Nitrogen Implantation on Sub-Quarter Micron CMOS LDD FETs", IEEE IEDM Techn. Dig. (1995) 859-862.
    1.16 P. Revesz, L. S. Hung, J. W. Mayer, and L. R. Zheng, "Morphological Degradation of TiSi2 on (100)Silicon", Appl. Phys. Lett. 48 (1986) 1591-1593.
    1.17 L. R. Zheng, S. Q. Feng, L. S. Hung, J. W. Mayer, G. Miles, and P. Revesz, "Interaction of TiSi2 Layers with Polycrystalline Si", Appl. Phys. Lett. 48 (1986) 767-769.
    1.18 C. Y. Wong, P. A. McFarland, C. Y. Ting, and L. K. Wang, "Thermal-Stability of TiSi2 on Monocrystalline and Polycrystalline Silicon", J. Appl. Phys. 60 (1986) 243-246.
    1.19 T. Nolan, R. Beyers, and R. Sinclair, "Evidence for a Grain Boundary Grooving Model of Agglomeration in Polycrystalline TiSi2 Thin Films", Mater. Res. Soc. Symp. Proc. 202 (1991) 95-100.
    1.20 T. P. Ndolan. R. Sinclair, and R. Beyers, "Modeling of Agglomeration in Polycrystalline Thin Film:Application to TiSi2 on a Silicon Substrate", J. Appl. Phys. 71 (1992) 720-724.
    1.21 Z. G. Xiao, G. A. Rozgonyi, C. A. Canovai, and C. M. Osburn, "Agglomeration of Cobalt Silicide Films", Mater. Res. Soc. Symp. Proc. 202 (1991) 101-106.
    1.22 R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, "Silicides and Local Interconnections for High-Performance VLSI Applications", IBM J. Res. Dev. 39 (1995) 403-417.
    1.23 S. Ogawa, T. Yoshida, and T. Kouzaki, "Dependence of Thermal-Stability of the Titanium Silicide Silicon Structure on Impurities", Appl. Phys. Lett. 56 (1990) 725-727.
    1.24 S. Ogawa, T. Yoshida, T. Kouzaki, S. Okuda, and K. Tsukamoto, "Thermal-Instability of the TiSi2/Si Structure:Impurity Effects," Appl. Sur. Sci. 41/42 (1989) 290-295.
    1.25 A. Nishiyama, Y. Akasaka, Y. Ushiku, K. Hishioka, Y. Suizu, and M. Shiozaki, "Agglomeration Resistant Self-Aligned Silicide Process Using N2 Implantation into TiSi2", Jpn. J. Appl. Phys. 36 (1997) 3639-3643.
    1.26 A. Nishiyama, Y. Akasaka, Y. Ushiku, K. Hishioka, Y. Suizu, and M. Shiozaki, "A Thermally Stable Salicide Process Using N2 Implantation into TiSi2", Proc. VLSI Multilever Interconnects Conf. (1990) 310-316.
    1.27 L. J. Chen, S. L. Cheng, and B. Y. Tsui, "Metal Contacts on Shallow Junctions", Nucl. Instru. and Meth. B121 (1997) 231-236.
    1.28 S. L. Cheng, L. J. Chen, and B. Y. Tsui, "Low-Resistivity TiSi2 Contacts on Nitrogen Implanted Ultrashallow Junctions", Mater. Chem. Phys. 50 (1997) 172-175.
    1.29 S. L. Cheng, L. J. Chen, and B. Y. Tsui, "Formation of TiSi2 on Nitrogen Ion Implanted (001)Si", J. Mater. Res. 14 (1999) 213-221.
    1.30 S. L. Cheng, J. J. Jou, L. J. Chen, and B. Y. Tsui, "Formation of C54-TiSi2 Enhanced by a Thin Interposing Mo Layer on Nitrogen Ion Implanted (001)Si", Mater. Chem. Phys. 54 (1998) 346-350.
    1.31 S. L. Cheng, J. J. Jou, L. J. Chen, and B. Y. Tsui, "Formation of C54-TiSi2 in Titanium on Nitrogen Ion Implanted (001)Si with a Thin Interposing Mo Layer", J. Mater. Res. 14 (1999) 2061-2069.
    1.32 K. M. Chen, S. L. Cheng, L. J. Chen, and B. Y. Tsui, "Effects of N+ Implantation on CoSi2 Contacts on Shallow Junctions", Mater. Chem. Phys. 54 (1998) 71-75.
    1.33 L. W. Cheng, S. L. Cheng, J. C. Chen, L. J. Chen, and B. Y. Tsui, "Effects of Nitrogen Ion Implantation on Nickel Silicide Contacts on Shallow Junction", Thin Solid Films 355-356 (1999) 412-416.
    1.34 S. M. Hu, "Stress-Related Problems in Silicon Technology," J. Appl. Phys. 70 (1991) R53-R80.
    1.35 K. Hinode, K. Mukai, T. Nishida, and N. Owada, "Stress-Induced Grain-Boundary Fractures in Al-Si Interconnects", J. Vac. Sci. Technol. B5 (1987) 518-522.
    1.36 P. J. Reuters, M. Offenberg, P. Balk, "Effects of Stress in TiSi2 Gate Metal-Oxide-Silicon Structures," Appl. Phys. Lett. 56 (1990) 1903 -1904.
    1.37 H. K. Henisch, in Semiconductor Contacts - An Approach to Ideas and Models, Clarendon Press, Oxford (1984) p.336.
    1.38 C. R. Teller, A. J. Tosser, "Size Effects in Thin Films", Elsevier, New York, (1982) p.251.
    1.39 S. L. Zhang and F. M. d'Heurle, "Stresses from Solid-State Reactions-A Simle-Model, Silicides", Thin Solid Films, 213 (1992) 34-39.
    1.40 F. M. d'Heurle and P. Gas, "Kinetics of Formation of Silicides : a Review", J. Mater. Res., 1 (1986) 205-221.
    1.41 S. P. Murarka, Metallization: Theory and Practice for VLSI and ULSI, (Butterworth-Heinemann, Boston, 1993) p.82..
    1.42 J. F. Jongste, P. F. A. Alkemade, G. C. A. M. Janssen, S. Radelaar, "Kinetics of the Formation of C49 TiSi2 from Ti-Si Multilayers as Observed by In-Situ Stress Measurements", J. Appl. Phys. 74 (1993) 3869-3879.
    1.43 M. D. Thouless, J. Gupta, and J. M. E. Harper, "Stress Development and Relaxation in Copper-Films During Thermal Cycling", J. Mater. Res. 18 (1993) 1845-1852.
    1.44 J. J. Toomey, S. Hymes, S. P. Murarka, "Stress Effects in Thermal Cycling of Copper", Appl. Phys. Lett. 66 (1995) 2074-2076.
    1.45 P. J. J. Wessels, O. B. Loopstra, J. F. Jongste, G. C. A. M. Janssen, A. L. Mulder, and S. Radelaar, "Stresses in Sputtered Ti-Si Multilayers and Polycrystalline Silicide Films", J. Appl. Phys. 63 (1988) 4979-4982.
    1.46 J. F. Jongste, F. E. Prins, G. C. A. M. Janssen, and S. Radelaar, "Stress in Titanium Disilicide Layers, During and After Formation", Mater. Res. Soc. Symp. Proc. 130 (1989) 321-326.
    1.47 S. C. Chen, H. Tamura, T. Hara, K. Kinoshita, K. Inoue, N. Endo and S. Nakamura, "Silicidation Reaction and Stress in Ti/Si", Jpn. J. Appl. Phys. 31 (1992) 201-205.
    1.48 T. B. Massalski (ed.), "Binary Alloy Phase Diagrams," ASM International, materials Park, OH, 1990.
    1.49 Beyers and R. Sinclair, "Metastable Phase Formation in Titanium-Silicon Thin-Films", J. Appl. Phys. 57 (1985) 5240-5245.
    1.50 J. B. Lasky, J. S. Snakos, O. J. Cain, and P. J. Geiss, "Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2", IEEE Trans. Electron Device, ED-38 (1991) 262-269.
    1.51 H. Jeon, C. A. Sukow, J. W. Honeycutt, G. A. Rozgonyi, and R. J. Nemanich, "Morphology and Phase Stability of TiSi2 on Si", J. Appl. Phys. 71 (1992) 4269-4276.
    1.52 T. Kitano, N. Kodama, T. Sakai, and S. Saito, "Suppression of Titanium Disilicide Formation on Heavily Arsenic-Doped Silicon Substrate," Jpn. J. Appl. Phys. 35, (1996) 591-592.
    1.53 K. Maex, "Silicides for Integrated Circuits: TiSi2 and CoSi2", Materials Science and Engineering, R11 (1993) 53-153.
    1.54 S. P. Murarka, "Applications of CoSi2 to VLSI and ULSI", Mater. Res. Soc. Symp. Proc. 320 (1994) 3-13.
    1.55 G. Bai, and A. Stivers, "Application of Cobalt Salicide in Sub-quarter Micron ULSI", Mat. Res. Soc. Symp. Proc. 402 (1996) 215-220.
    1.56 K. Maex, "Silicides for Integrated Circuits: TiSi2 and CoSi2", Materials Science and Engineering, R11 (1993) 53-153.
    1.57 J. Y. Tsai, C. M. Osburn and S. L. Hsia, "Silicidation Strategy of Sub-0.1 mm Junctions for Deep Submicron Devices", Mater. Res. Soc. Symp. Proc. 402 (1996) 245-250.
    1.58 S. S. Wong, D. R. Bradbury, D. C. Chen, and K. Y. Chiu, "Elevated source/drain MOSFET", IEDM Tech. Dig. (1984) 634.
    1-59 J. R. Pfiester, R. D. Sivan, H. M. Liaw, C. A. Seelbach, and C. D. Gunderson, "A Self-aligned Elevated Source/Drain MOSFET", IEEE Electron Device Lett. EDL-11 (1990) 365-367.
    1.60 A. Waite, A. G. R. Evans, and N. Afshar-Hanaii, "Electrical Stressing of Submicrometre MOSFETs with Raised Source/Drain Structures Realised Selective Epitaxial Growth of Silicon Using Silane only", Electronics Letters 30 (1994) 1455-1456.
    1.61 K. N. Tu and J. W. Mayer, "Silicide Formation", in "Thin Films-Interdiffusion and Reactions", edited by J. M. Poate, K. N. Tu, and J. M. Mayer, Wiley, New York (1978).
    1.62 F. M. d'Heurle, C. S. Peterson, J. E. E. Baglin, S. J. Laplaca, and C. Y. Wong, "Formation of Thin Films of NiSi : Metastable Structure, Diffusion Mechanism in Intermetallic Compounds", J. Appl. Phys. 55, (1984) 4208-4218.
    1.63 W. J. Chen and L. J. Chen, "Interfacial Reaction of Nickel Metal Thin Films on Silicon", J. Appl. Phys., 70 (1991) 2628-2633.
    1.64 T. Morimoto, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, H. Okano, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai, "A NiSi Salicide Technology for Advanced Logic Devices", IEDM Tech. Dig. (1991) 653-656.
    1.65 T. Ohguro, S. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T.Yoshitomi, M. Ono, M. Saito, and H. Iwai, "Analysis of Resistance Behavior in Ti- and Ni-salicide Polysilicon films", IEEE Trans. Electron Devices, ED-41 (1994) 2305-2317.
    1.66 P. D. Agnello and A. Fink, "Improved Control of Momentary Rapid Thermal Annealing for Silicidation", J. Electron. Mater. 22 (1993) 661-665.
    1.67 C. S. Chang, C. W. Nieh, and L. J. Chen, "Formation of Epitaxial NiSi2 of Single Orientation on (111)Si inside Miniature Size Oxide Openings", Appl. Phys. Lett. 50 (1987) 259-261.
    1.68 L. J. Chen, J. J. Chu, W. Lur, H. F. Hsu, and T. C. Lee, "Recent Developments in the Epitaxial Growth of Transition Metal Silicides on Silicon", in Heterostructure on silicon : One Step Further with Silicon, edited by Y. I. Nissim, and E. Rosencher ( Kluwer Academic Publishers, Dordrecht, 1989 ) p. 231.
    1.69 H. F. Hsu, L. J. Chen, and J. J. Chu, "Epitaxial Growth of CoSi2 on (111)Si inside Miniature-size Oxide Openings by Rapid Thermal Annealing", Appl. Phys. Lett. 69 (1991) 4282-4284.
    Chapter 3
    3.1 S. P. Murarka, " Self-aligned Silicides Metals for Very Large-scale Integrated-circuit Applications", J. Vac. Sci. Technol. B, 4 (1986) 1325-1331.
    3.2 C. K. Lau, Y. C. See, D. B. Scott, J. M. Bridges, S. M. Perna, and R. D. Davies, "Titanium Disilicide Self-aligned Source-Drain + Gate Technology", IEEE IEDM Techn. Dig. (1982) 714-717.
    3.3 M. E. Alperin, T. C. Holloway, R. A. Haken, C. D. Gosmeyer, R. V. Karnaugh, and W. D. Parmantie, "Development of the Self-Aligned Silicide Process for VLSI Application", IEEE Trans. Electron Device, ED-32 (1985) 141-149.
    3.4 J. B. Lasky, J. S. Snakos, O. J. Cain, and P. J. Geiss, "Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2", IEEE Trans. Electron Device, ED-38 (1991) 262-269.
    3.5 K. Maex, "Silicides for Integrated Circuits: TiSi2 and CoSi2", Materials science and engineering, R11 (1993) 53-153.
    3.6 Standard JCPDS diffraction pattern - 3-943, 38-844 and 43-989, JCPDS-International Center for Diffraction Data, PDF-2 Database, 12 Campus Blvd., Newton Square, PA 19073-3273.
    3.7 R. Mukai, S. Ozawa and H. Yaki, "Compatibility of NiSi in the Self-aligned Silicide Process for Deep Submicronmeter Devices", Thin Solid Films, 270 (1995) 567-572.
    3.8 T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y, Katsumata and H. Iwai, "Self-aligned Nickel-mono-silicide Technology for High-speed Deep Submicrometer devices", IEEE Trans. Electron Devices, ED-42 (1995) 915-922.
    3.9 T. Murakami, T. Kuroi, Y. Kawasaki, M. Inuishi, Y. Matsui and A. Yasuoka, "Application of Nitrogen Implantation to ULSI ", Nucl. Instrum. Methods B, 121 (1997) 257-261.
    3.10 S. L. Cheng, L. J. Chen, and B. Y. Tsui, "Low-Resistivity TiSi2 Contacts on Nitrogen Implanted Ultrashallow Junctions", Mater. Chem. Phys. 50 (1997) 172-175.
    3.11 S. L. Cheng, J. J. Jou, L. J. Chen, and B. Y. Tsui, "Formation of C54-TiSi2 in Titanium on Nitrogen Ion Implanted (001)Si with a Thin Interposing Mo Layer", J. Mater. Res. 14 (1999) 2061-2069.
    3.12 T. S. Chao, M. C. Liaw, C. H. Chu, C. Y. Chang, C. H. Chien, C. P. Hao, and T. F. Lei, "Mechanism of Nitrogen Coimplant for Suppressing Boron Penetration in p(+)-polycrystalline Silicon Gate of p Metal-oxide Semiconductor Field Effect Transistor", Appl. Phys. Lett., 69 (1996) 1781-1782.
    3.13 W. J. Chen and L. J. Chen, " Thermal Sability of NiSi2 on Ion Implanted (001)Si", J. Appl. Phys., 71 (1992) 653-658.
    Chapter 4
    4.1 S. P. Murarka, "Metallization: Theory and Practice for VLSI and ULSI", (Butterworth-Heinemann, Boston, 1993) p. 82.
    4.2 S. L. Cheng, H.Y. Huang, Y.C. Peng, L.J. Chen, B.Y. Tsui, C.J. Tsai, and S.S. Guo, "Effects of Stress on the Growth of TiSi2 Thin Films on (001)Si",Appl. Phys. Lett. 74 (1999) 1406-1408.
    4.3 M. A. Nicolet and S. S. Lau, "Materials and Process Characterization". Edited by N. G. Einspruch and G. B. Larrabee (Academic Press, New York, 1983) p. 329.
    4.4 P. G. Shewmon, "Diffusion in Solid", 2nd edition, (The Metallurgical Society, Warrendale, PA, 1989) p. 84.
    4.5 J. Y. Yew, L.J. Chen and K. Nakamura, "Epitaxial Growth of NiSi2 on (001)Si inside 0.1-0.6 mm Oxide Openings Prepared by Electron Beam Lithography", Appl. Phys. Lett. 69 (1996) 999-1001.
    4.6 H. F. Hsu, L. J. Chen, and J. J. Chu, "Epitaxial Growth of CoSi2 on (111)Si inside Miniature Size Oxide Openings", J. Appl. Phys. 69 (1991) 4282-4285.
    4.7 C. S. Chang, C. W. Nieh, and L. J. Chen, "Formation of epitaxial NiSi2 of Single Orientation on (111)Si inside Miniature Size Oxide Openings", Appl. Phys. Lett. 50 (1987) 259-261.
    4.8 Y. L. Shen, S. Suresh, and I. A. Blench, "Stresses, Curvatures, and Shape Changes Arising from Patterned Lines on Silicon Wafers", J. Appl. Phys. 80 (1996) 1388-1398.
    4.9 T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y, Katsumata and H. Iwai, "Self-aligned Nickel-mono-silicide Technology for High-speed Deep Submicrometer devices", IEEE Trans. Electron Devices, ED-42 (1995) 915-922.
    4.10 S. P. Murarka, Metallization: Theory and Practice for VLSI and ULSI, (Butterworth-Heinemann, Boston, 1993) p. 74.
    4.11 K. N. Tu, W. K. Chu and J. W. Mayer, Thin Solid Films, 25, 403 (1975).
    4.12 T. Y. Tan and U. Goesele, Appl. Phys. A 21, 1 (1985).
    Chapter 5
    5.1 S. P. Murarka, " Self-aligned Silicides Metals for Very Large-scale Integrated-circuit Applications", J. Vac. Sci. Technol. B, 4 (1986) 1325-1331.
    5.2 J. B. Lasky, J. S. Snakos, O. J. Cain, and P. J. Geiss, "Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2," IEEE Trans. Electron Device, ED-38 (1991) 262-269.
    5.3 K. Maex, "Silicides for Integrated Circuits: TiSi2 and CoSi2", Materials Science and Engineering, R11 (1993) 53-153.
    5.4 R. Mukai, S. Ozawa and H. Yaki, "Compatibility of NiSi in the Self-aligned Silicide Process for Deep Submicronmeter Devices", Thin Solid Films, 270 (1995) 567-572.
    5.5 T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y, Katsumata and H. Iwai, "Self-aligned Nickel-mono-silicide Technology for High-speed Deep Submicrometer devices", IEEE Trans. Electron Devices, ED-42 (1995) 915-922.
    5.6 J. Y. Yew, L.J. Chen and K. Nakamura, "Epitaxial Growth of NiSi2 on (001)Si inside 0.1-0.6 mm Oxide Openings Prepared by Electron Beam Lithography", Appl. Phys. Lett. 69 (1996) 999-1001
    5.7 L. W. Cheng, S. L. Cheng, J. Y. Chen and L. J. Chen, "Effects of Nitrogen Ion Implantation on Nickel Silicide Contacts on Shallow Junction", Thin Solid Films 355-356 (1999) 412-416.
    5.8 Standard JCPDS diffraction pattern - 7-251 and 38-844, JCPDS-International Center for Diffraction Data, PDF-2 Database, 12 Campus Blvd., Newton Square, PA 19073-3273.
    5.9 F. M. d'Heurle, C. S. Petersson, J. E. E. Baglin, S. J. Laplaca, and C. Y. Wong, "Formation of Thin Films of NiSi : Metastable Structure, Diffusion Mechanism in Intermetallic Compounds", J. Appl. Phys. 55 (1984) 4208-4218.
    5.10 L. P. Wang, J. R. Yang and J. Hwang, "Microstructural and Electrical Properties of Epitaxial of PtSi/p-Si(100) Co-deposited under Ultrahigh Vacuum", J. Appl. Phys. 74 (1993) 6215-6255.
    5.11 T. G. Finstad, "Silicide Formation with Nickel and Plantinum Double Layers on Silicon", Thin Solid Films 51 (1978) 411-424.
    5.12 G. Ottaviani, K. N. Tu, W. K. Chu, L. S. Hung and J. W. Mayer, "NiSi Formation at the Silicide/Si Interface on the NiPt/Si System", J. Appl. Phys. 53 (1982) 4903-4906
    5.13 F. M. d'Heurle, "Nucleation of a New Phase from the Interacton of 2 Adjacent Phases-Some Silicides", J. Mater. Res., 3 (1988) 167-195.
    5.14 D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud and O. Thomas, " Effects of Co, Pt, and Au Additions on the Stability and Epitaxy of NiSi2 Films on (111)Si", J. Appl. Phys. 84 (1998) 2583-2590
    Chapter 6
    6.1 C. M. Osburn, J. Y. Tsai and J. Sun, "Metal Silicides: Active Elements of ULSI Contacts", J. Electron. Mater. 25 (1996) 1725-1739.
    6.2 J. B. Lasky, J. S. Snakos, O. J. Cain, and P. J. Geiss, "Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2", IEEE Trans. Electron Device, ED-38 (1991) 262-269.
    6.3 K. Maex, "Silicides for Integrated Circuits: TiSi2 and CoSi2", Materials Science and Engineering, R11 (1993) 53-153.
    6.4 R. Mukai, S. Ozawa and H. Yaki, "Compatibility of NiSi in the Self-aligned Silicide Process for Deep Submicronmeter Devices", Thin Solid Films, 270 (1995) 567-572.
    6.5 T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y, Katsumata and H. Iwai, "Self-aligned Nickel-mono-silicide Technology for High-speed Deep Submicrometer devices", IEEE Trans. Electron Devices, ED-42 (1995) 915-922.
    6.6 C. S. Chang, C. W. Nieh, and L. J. Chen, "Formation of Epitaxial NiSi2 of Single Orientation on (111)Si inside Miniature Size Oxide Openings", Appl. Phys. Lett. 50 (1987) 259-261.
    6.7 J. Y. Yew, L.J. Chen and K. Nakamura, "Epitaxial Growth of NiSi2 on (001)Si inside 0.1-0.6 mm Oxide Openings Prepared by Electron Beam Lithography", Appl. Phys. Lett. 69 (1996) 999-1001.
    6.8 L. W. Cheng, S. L. Cheng, J. Y. Chen and L. J. Chen, "Effects of Nitrogen Ion Implantation on Nickel Silicide Contacts on Shallow Junction", Thin Solid Films 355-356 (1999) 412-416.
    6.9 Standard JCPDS diffraction pattern - 7-251 and 38-844, JCPDS-International Center for Diffraction Data, PDF-2 Database, 12 Campus Blvd., Newton Square, PA 19073-3273.
    6.10 L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee and F. M. Pan, "Formation of Ni Silicides on (001)Si with a Thin Interposing Pt Layer", J. Vac. Sci. Technol. A 18(4) (2000) 1176-1179.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE