簡易檢索 / 詳目顯示

研究生: 楊又先
Yu-Hsien Yang
論文名稱: 在鍺離子佈植之非線性光學平面波導與通道波導上實現準相位匹配二次諧波產生
QPM SHG in Ge ion-implanted nonlinear optical plannar and channel waveguides
指導教授: 趙煦
Shiuh Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 98
中文關鍵詞: 鍺離子佈植平面波導通道波導準相位匹配二次諧波產生
外文關鍵詞: Ge ion implantation, plannar waveguide, channel waveguide, quasi phase match, second harmonic generation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究方向主要是以融熔石英為基板,把鍺離子佈植到試片表面,由專門分析離子佈植的模擬軟體(SRIM)模擬實際佈植情況的結果,選擇鋁金屬薄膜當作遮罩並用金屬反應式離子蝕刻系統(Metal RIE system)蝕刻鋁膜,在試片表面上製作出平均寬度約為8um的通道波導遮罩結構,再把高能量(5MeV)的鍺離子束入射到試片表面,成功的在試片表面製作出鍺離子佈植通道波導。

    利用模擬波導的軟體Beam_PROP 5.0C,假設佈植後鍺離子分佈最多的深度位置與折射率變化最多的深度位置一致,把佈植後的的波導模型化,再以由菱鏡耦合儀所量測到的鍺離子佈植平面波導量測數據為核心,推算在通道波導中光場前進的情況,來做QPM-SHG的轉換週期預估。

    配合本實驗室中的熱極化誘導裝置,在已經有通道波導的試片表面上產生出非線性區域,再利用266nm波段的UV光源做週期性非線性強度抹除,成功的在通道波導上把1064nm轉換成532nm波段的綠光,製作出可倍頻轉換的鍺離子佈植通道波導,在本研究中產生出約1.7 u Watt的倍頻光源,成功的在這類的材料中把轉換效率提升,也應可以將這樣的技術應用在日後矽基板上光子電路上,實現光子電路上光與電的交互作用的目的。


    CHAPTER 1 導論 1 1.1簡介 1 1.2非線性光學理論概述 2 1.3 二次諧波產生 4 1.4相位匹配(PM)與準相位匹配(QPM) 5 1.5波導中的準相位匹配與調制週期預估修正 8 1.6各種波導製成方式與摻鍺非線性探討相關論文回顧 10 1.7 本篇論文架構 11 CHAPTER 2離子佈植原理簡述 13 2.1離子佈植加速器之基本原理簡述 13 2.2離子佈植後通道波導模擬 17 CHAPTER 3 離子佈植後平面波導分析與QPM-SHG測試結果 19 3.1離子佈植後波導模擬分析 19 3.1.1 使用模擬軟體做平面波導模擬分析與週期預估 19 3.2 鍺離子佈植後平面波導之非線性特性探討與QPM SHG 測試結果與討論 28 3.2.1 佈植後平面波導非線性特性探討 28 3.2.2 QPM SHG光路架設與結果 30 CHAPTER 4 通道波導製作 37 4.1 通道波導結構製作 37 4.2實驗內容 39 4.2.1試片準備 39 4.2.2鋁膜蒸鍍 39 4.2.3黃光製程 41 4.2.4 RIE金屬反應離子蝕刻 43 4.2.5試片清潔 49 4.2.6熱極化誘導(Thermal poling) 50 4.2.7 Maker Fringe原理與量測 51 4.2.8鋁光罩製作 52 4.2.9 UV紫外光抹除 55 4.2.10 拋光磨邊 56 4.3 元件製作結果與討論 56 CHAPTER 5倍頻元件週期預估、測試與結果討論 57 5.1 QPM 週期設計分析 57 5.1.1通道波導的倍頻轉換週期預估 57 5.1.2 相位匹配之範圍預估 59 5.1.3 RIE製程後通道波導模擬分析 62 5.2 QPM SHG光路評估與架設 66 5.3 QPM SHG量測結果 71 5.3.1 二次非線性量測結果呈現 71 5.4 結果討論 77 5.5 轉換效率與非線性係數計算 80 APPENDIX A佈植前後機制探討 86 APPENDIX B離子佈植操作流程 90 APPENDIX C RIE操作步驟 92

    [1] R. A. Myers , N. Mukherjee , “Large second-order nonlinearity in poled fused silica” Optics letters ,Vol. 16, No. 22,November 15, 1991.
    [2] Huai-Yi Chen, Jin- Sheng Sue , ”Quasi-phase-matched second -
    harmonic generation in ultraviolet-assisted periodically poled planar fused silica” Optics Letters Vol.28 No. 11, p917(2003)
    [3] 林群翎 ” 鍺離子佈植之非線性光壆平面波導之製作處理及凖相位匹配二次諧波產生之應用”清華大學碩士論文(2003)
    [4] Wei Xu, Paul Blazkiewicz ,“Silica Fiber Poling Technology” .
    Adv.Mater.,No12-13(2001).
    [5] Xue-Ming LIU , Ming-De ZHANG “Theoretical study for thermal electric field poling of Fused Silica” J.Appl.Phys.Vol.40(2001),p4069.
    [6] George I. Stegeman , Roger H. Stolen” Waveguides and fibers for nonlinear optics” J. Opt. Soc. Am. B/Vol. 6, No. 4/April 1989.
    [7] Martin M. Fejer , G. A. Magel “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances” IEEE Journal of quantum electronics , Vol .28 , No .11 , p2631(1992).
    [8] M. Houe and P. D. Townsend “ An introduction to methods of periodic poling for second-harmonic generation ” , Appl. Phys. 28
    (1995) , 1747-1763.
    [9] Overlap.
    [10] P.W.Leech , M.F.Faith, “channel waveguide fromed by ion implantation of PECVD grown silica” IEE Proc.Optoelectron.
    Vol.144,No.2,April 1997.
    [11] optical review vol.3 No 3.1996.
    [12] 江振煜 ”利用溶膠凝膠法在熔融石英玻璃基板上製作摻鍺的光學波導” 清華大學碩士論文(2004).
    [13] 葉彥鈞 “在具有質子交換波導之第一階週期性鐵電域反轉的鉭酸鲤晶體上以準向位匹配原理產生二次諧波藍光” 清華大學碩士論文(2000)
    [14] C.M.Johnson,M.C.Ridgway ”Ion-implanted Waveguide Formation in Silica” IEEE 1997
    [15] G. M. Davis L. Zhang, P. J. Chandler,” Planar and channel waveguide fabrication in LiB3O5 using MeV He1 ion
    Implantation ”J. Appl. Phys. 79 (6), 15 March 1996.
    [16] A.C. Busacca , D. Faccio “Electro-optic dynamics in thermally poled Ge core doped silica fibre” Electronics Letters Vol. 39 , No.1 , 2003.
    [17] C.J.Marckmann ”Measuring poling-induced nonlinearities in Ge:SiON waveguides using a Bragg grating”.
    [18] http://www.srim.com.org
    [19] R. Ulrich , R. Torge ” Measurement of Thin Film Parameters with a Prism Coupler ” Applied Optics Vol.12 , No.12 , p2901(1973).
    [20] Steven T. Kirsch “ Determining the refractive index and thickness of thin films from prism coupler measurements “Applied Optics Vol.20 , No.12 , p2085(1981).
    [21] Beam_Prop 5.0C User manual
    [22] J. Albert, J. L. Brebner ”Refractive-index changes in fused silica produced by heavy-ion implantation followed by photobleaching”
    Optics Letters ,Vol. 17, No. 23,December 1, 1992
    [23] 陳淮義 “A study on the optical nonlinearity of thermally poled planar fused silica plates and development of QPM SHG devices ”
    清華大學博士論文(2003).
    [24] D. Fluck St. Bauer,”Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design” Appl. Phys. Lett. 69 (27), 30 December 1996
    [25] D. Pureur, A. C. Liu “ Absolute measurement of the second-order nonlinearity profile in poled silica ” Optics Letters , Vol. 23 , No. 8,
    (1998).
    [26] J. M. Dell, M. J. Joyce, and G. O. Stone,”Erasure of poling induced second order optical nonlinearities in silica by UV exposure ” SPIE Proc. 2289,185(1994).
    [27] 蘇錦昇 “在週期性極化融熔石英玻璃基板上利用第一階準相位匹配原理製作二次諧波綠光倍頻元件” 清華大學碩士論文(2002)
    [28] Kazuhisa Yamamoto , Kimineri Mizuuchi , “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide” IEEE , Journal of Quantum electronics , Vol. 28 , No. 9 , 1992.
    [29] P.S. Weitzman , J.J. Kester “ Electric Field induced second harmonic generation in germanium doped silica planar waveguide ” Electronics Letters , Vol. 30 , No. 9 , p697(1994).
    [30] J. Albert, J. L. Brebner, “ Formation and bleaching of strong ultraviolet absorption bands in germanium implanted synthetic fused silica“ p148 , Appl. Phys. Lett. 60 (2), 13 January 1992.
    [31] Junji Nishii , Akiyoshi Chayahara “ Comparison of formation process od ultraviolet induced color centers in GeO2-SiO2 glass fiber perform and Ge-implanted SiO2 “ Nuclear Instruments and Methods in Physics Research B , 116(1996) , 150-153.
    [30] T. Yamaguchi , E. Watanabe “Evaluation of silica glasses implanted by high-energy ions using a UV-excited microspectroscopy” Nuclear Instruments and Methods in Physics Research B , 191 (2002) 371–374.
    [31] M.Hattori , Y.Nishihara “Characterization of ion-implanted silica glass by vacuum ultraviolet absorption spectroscopy ” Nuclear Instruments and Methods in Physics Research B 191 (2002) , 362–365.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE