研究生: |
孫亦廷 Sun, Yi Ting |
---|---|
論文名稱: |
用X光繞射及螢光顯微鏡技術來研究抗菌藥物和生物膜的作用 Studies of interactions between antibiotic drugs and bio-membranes by X-ray diffraction and fluorescence microscopy |
指導教授: |
李寬容
Lee, Kuan Rong 李明道 Lee, Ming Tao |
口試委員: |
蘇世強
Su, Shey-Chaing 林滄浪 Lin, Tsang Lang 高茂傑 Kao, Mou Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 鮑式不動桿菌 、巨型單層微胞 、多片層X光繞射 |
外文關鍵詞: | Acinetobacter baumannii, GUV, LXD |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
自從1990年初期以來,Acinetobacter 被視為醫院內重要的細菌之一。在Acinetobacter 物種之中,最常出現的一株為鮑式不動桿菌Acinetobacter baumannii(簡稱A. baumannii) 。此類物種為需氧的葛蘭氏陰性菌(Gram-)。A. baumannii通常會經由唾液、身體分泌物、尿液、腦脊液蛋白及腹膜液,造成肺炎、尿道感染和諸多的病症。此菌種每年造成台灣人民死亡率達60%之高。而大多數的抗生素對此鮑式不動桿菌都是沒有效用的,但Penicillin 及sulbactam這二種抗菌藥物卻對鮑式不動桿菌有抑制的反應。所以在此探討二種抗生素對於鮑式不動桿菌的反應機制。
抗生素藥物分子能附著在生物膜結構的表面,顯示在膜上的行為表現。在此篇研究中,使用penicillin及sulbactum作為標靶藥物與生物合成膜作用。本實驗先用合成生物膜代替鮑式不動桿菌,另外也使用文獻中已知的cholesterol來當作參考資料。藉此使用二種不同的實驗方法對這個主題作深入的探討。其一就是將脂質lipid以電生成的方法長成巨型單層微胞(GUVs) ,再使用螢光顯微鏡研究分析。巨型單層微胞對於藥物分子附著過程的動力學及造成面積改變的原因。第二就是在國家同步輻射研究中心,利用13A光束實驗站的多片層X光繞射技術(LXD) 。以此方法利用不同藥物分子及脂質的莫耳濃度比率來測量生物膜厚度的改變對於整個機制的影響。這二種實驗結果中,膽固醇cholesterol及二種抗生素藥物penicillin、sulbactum在動力學和片層繞射實驗對於生物膜有截然不同的結果。藉此實驗能延伸到活體外in vivo的應用,希望不久的將來能與醫學臨床有所結合直接應用於藥物設計上。
Abstract
Acinetobacter baumannii is a species of pathogenic bacterium, referred to as an aerobic gram-negative bacterium. Acinetobacter have been recognized as important nosocomial bacteria since 1990s. A. baumannii is often found in the sputum, body secretion, urine, and the cerebrospinal fluid or peritoneal fluid of the patients, including intubated patients in hospitals. It will lead to serious pneumonia, infections of the urinary tract and even fatal consequences. The bacterium results in 60% death rate of Taiwan hospital patients each year. Most antibiotics are ineffective against A. baumannii currently. Penicillin and sulbactam were used to study the mechanism of drug resistance presented by A. baumannii.
Antibiotic drug resistance is a serious issue for the treatment of bacterial infection. Understanding the resistance of antibiotics is a key issue for developing new drugs. In this study, we used penicillin and sulbactam as the model antibiotics to interact with model membranes. Cholesterol was used to target the membrane for comparison with the well-known insertion model. Lamellar X-ray diffraction (LXD) was used to determine membrane thickness using successive drug-to-lipid molar ratios. The aspiration method for a single giant unilamellar vesicle (GUV) was used to monitor the kinetic binding process of antibiotic-membrane interactions in an aqueous solution. Both penicillin and sulbactam are found lying outside the model membrane, and cholesterol inserts perpendicularly into the hydrophobic region of the membrane in aqueous solution. This result provides structural insights for understanding the antibiotic-membrane interaction and the mechanism of antibiotics.
Keywords: Acinetobacter baumannii, penicillin, sulbactam, cholesterol, GUV, LXD
Abbreviations: A. baumannii, Acinetobacter baumannii; LXD, Lamellar X-ray diffraction; GUV, giant unilamellar vesicle
Chapter 5
Reference
1. Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N. & Bonomo, R. A. (2007) Global challenge of multidrug-resistant Acinetobacter baumannii, Antimicrobial agents and chemotherapy. 51, 3471-84.
2. Maragakis, L. L. & Perl, T. M. (2008) Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 46, 1254-63.
3. Lin, N. T., Chiou, P. Y., Chang, K. C., Chen, L. K. & Lai, M. J. (2010) Isolation and characterization of phi AB2: a novel bacteriophage of Acinetobacter baumannii, Research in microbiology. 161, 308-14.
4. Peleg, A. Y., Seifert, H. & Paterson, D. L. (2008) Acinetobacter baumannii: emergence of a successful pathogen, Clinical microbiology reviews. 21, 538-82.
5. Lin, C. H., Su, S. C., Ho, K. H., Hsu, Y. W. & Lee, K. R. (2014) Bactericidal effect of sulbactam against Acinetobacter baumannii ATCC 19606 studied by 2D-DIGE and mass spectrometry, International journal of antimicrobial agents. 44, 38-46.
6. Jager, S. A., Shapovalova, I. V., Jekel, P. A., Alkema, W. B., Svedas, V. K. & Janssen, D. B. (2008) Saturation mutagenesis reveals the importance of residues alphaR145 and alphaF146 of penicillin acylase in the synthesis of beta-lactam antibiotics, Journal of biotechnology. 133, 18-26.
7. Medeiros, A. A. (1997) Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 24 Suppl 1, S19-45.
8. Waxman, D. J. & Strominger, J. L. (1983) Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics, Annual review of biochemistry. 52, 825-69.
9. Ghuysen, J. M. (1991) Serine beta-lactamases and penicillin-binding proteins, Annual review of microbiology. 45, 37-67.
10. Scheffers, D. J. & Pinho, M. G. (2005) Bacterial cell wall synthesis: new insights from localization studies, Microbiology and molecular biology reviews : MMBR. 69, 585-607.
11. Massova, I. & Mobashery, S. (1998) Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases, Antimicrobial agents and chemotherapy. 42, 1-17.
12. Gardner, A. D. (1940) Morphological Effects of Penicillin on Bacteria, Nature. 146, 837-838.
13. Duguid, J. P. (1946) The sensitivity of bacteria to the action of penicillin, Edinburgh medical journal. 53, 401-12.
14. Waxman, D. J. & Strominger, J. L. (1980) Sequence of active site peptides from the penicillin-sensitive D-alanine carboxypeptidase of Bacillus subtilis. Mechanism of penicillin action and sequence homology to beta-lactamases, The Journal of biological chemistry. 255, 3964-76.
15. Yocum, R. R., Rasmussen, J. R. & Strominger, J. L. (1980) The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase, The Journal of biological chemistry. 255, 3977-86.
16. Wise, E. M., Jr. & Park, J. T. (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis, Proceedings of the National Academy of Sciences of the United States of America. 54, 75-81.
17. Tipper, D. J. & Strominger, J. L. (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine, Proceedings of the National Academy of Sciences of the United States of America. 54, 1133-41.
18. Sainsbury, S., Bird, L., Rao, V., Shepherd, S. M., Stuart, D. I., Hunter, W. N., Owens, R. J. & Ren, J. (2011) Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms, Journal of molecular biology. 405, 173-84.
19. Koch, A. L. (1985) How bacteria grow and divide in spite of internal hydrostatic pressure, Canadian journal of microbiology. 31, 1071-84.
20. Cooper, P. D. (1954) The site of action of penicillin. III. Effect of surface-active substances on penicillin uptake by Staphylococcus aureus, Biochimica et biophysica acta. 13, 433-8.
21. Cooper, P. D. (1956) Site of action of radiopenicillin, Bacteriological reviews. 20, 28-48.
22. Barber, M. (1961) Hospital infection yesterday and today, Journal of clinical pathology. 14, 2-10.
23. Karlowsky, J. A., Draghi, D. C., Jones, M. E., Thornsberry, C., Friedland, I. R. & Sahm, D. F. (2003) Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001, Antimicrobial agents and chemotherapy. 47, 1681-8.
24. Levin, A. S., Levy, C. E., Manrique, A. E., Medeiros, E. A. & Costa, S. F. (2003) Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam, International journal of antimicrobial agents. 21, 58-62.
25. Lode, H. M. (2008) Rational antibiotic therapy and the position of ampicillin/sulbactam, International journal of antimicrobial agents. 32, 10-28.
26. Samsonov, A. V., Mihalyov, I. & Cohen, F. S. (2001) Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes, Biophysical journal. 81, 1486-500.
27. Sessa, G., Freer, J. H., Colacicco, G. & Weissmann, G. (1969) Interaction of alytic polypeptide, melittin, with lipid membrane systems, The Journal of biological chemistry. 244, 3575-82.
28. Needham, D. & Nunn, R. S. (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol, Biophysical journal. 58, 997-1009.
29. Sun, Y., Lee, C. C., Hung, W. C., Chen, F. Y., Lee, M. T. & Huang, H. W. (2008) The bound states of amphipathic drugs in lipid bilayers: study of curcumin, Biophysical journal. 95, 2318-24.
30. McIntosh, T. J. & Simon, S. A. (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers, Biochemistry. 25, 4948-52.
31. Harroun, T. A., Heller, W. T., Weiss, T. M., Yang, L. & Huang, H. W. (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin, Biophysical journal. 76, 3176-85.
32. Angelova, M. I., Soleau, S., Meleard, P., Faucon, J. F. & Bothorel, P. (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and applications, Progr Colloid Polym Sci. 89, 127-131.
33. Okumura, Y. & Oana, S. (2011) Effect of counter electrode in electroformation of giant vesicles, Membranes. 1, 345-53.
34. Zhelev, D. V. & Needham, D. (1993) Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension, Biochimica et biophysica acta. 1147, 89-104.
35. Kwok, R. & Evans, E. (1981) Thermoelasticity of large lecithin bilayer vesicles, Biophysical journal. 35, 637-52.
36. Olbrich, K., Rawicz, W., Needham, D. & Evans, E. (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers, Biophysical journal. 79, 321-7.
37. Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers, Biophysical journal. 79, 328-39.
38. Wilkins, M. H., Blaurock, A. E. & Engelman, D. M. (1971) Bilayer structure in membranes, Nature: New biology. 230, 72-6.
39. Wu, Y., He, K., Ludtke, S. J. & Huang, H. W. (1995) X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations, Biophysical journal. 68, 2361-9.
40. Perutz, M. F. (1954) The structure of haemoglobin. III. direct determination of the molecular transform, The Royal Society. 225, 264-286.
41. Torbet, J. & Wilkins, M. H. (1976) X-ray diffraction studies of lecithin bilayers, Journal of theoretical biology. 62, 447-58.
42. Blaurock, A. E. (1971) Structure of the nerve myelin membrane: proof of the low-resolution profile, Journal of molecular biology. 56, 35-52.
43. Ludtke, S., He, K. & Huang, H. (1995) Membrane thinning caused by magainin 2, Biochemistry. 34, 16764-9.
44. Lee, M. T., Hung, W. C., Chen, F. Y. & Huang, H. W. (2008) Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides, Proceedings of the National Academy of Sciences of the United States of America. 105, 5087-92.
45. Hung, W. C., Chen, F. Y., Lee, C. C., Sun, Y., Lee, M. T. & Huang, H. W. (2008) Membrane-thinning effect of curcumin, Biophysical journal. 94, 4331-8.
46. Lllana, K. B., Nkslrn, G., Sara, S. & Raphael, B. (1984) Solubilities of Cholesterol, Sitosterol, and Cholesteryl Acetate in
Polar Organic Solvents, J Chem Eng Data. 29, 441-443.
47. Kučerka, N., Tristram-Nagle, S. & Nagle, J. (2006) Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains, Journal of Membrane Biology. 208, 193-202.
48. Brzustowicz, M. R., Cherezov, V., Caffrey, M., Stillwell, W. & Wassall, S. R. (2002) Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation, Biophysical journal. 82, 285-98.
49. Harroun, T. A., Katsaras, J. & Wassall, S. R. (2006) Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane, Biochemistry. 45, 1227-33.
50. Hung, W. C., Lee, M. T., Chen, F. Y. & Huang, H. W. (2007) The condensing effect of cholesterol in lipid bilayers, Biophysical journal. 92, 3960-7.
51. Lee, M. T., Chen, F. Y. & Huang, H. W. (2004) Energetics of pore formation induced by membrane active peptides, Biochemistry. 43, 3590-9.
52. Chen, F. Y., Lee, M. T. & Huang, H. W. (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation, Biophysical journal. 84, 3751-8.
53. Nakae, T. & Nikaido, H. (1975) Outer membrane as a diffusion barrier in Salmonella typhimurium. Penetration of oligo- and polysaccharides into isolated outer membrane vesicles and cells with degraded peptidoglycan layer, The Journal of biological chemistry. 250, 7359-65.
54. Nagle, J. F. & Tristram-Nagle, S. (2000) Structure of lipid bilayers, Biochimica et biophysica acta. 1469, 159-95.
55. Hung, W. C. & Chen, F. Y. (2003) The hydrophobic-hydrophilic interface of phospholipid membranes studied by lamellar X-Ray diffraction, Chinese journal of physics. 41, 85-91.
56. Lee, M. T., Hung, W. C., Chen, F. Y. & Huang, H. W. (2005) Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation, Biophysical journal. 89, 4006-16.
57. Lee, M. T., Sun, T. L., Hung, W. C. & Huang, H. W. (2013) Process of inducing pores in membranes by melittin, Proceedings of the National Academy of Sciences of the United States of America. 110, 14243-8.
58. Olsen, B. N., Schlesinger, P. H. & Baker, N. A. (2009) Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation, Journal of the American Chemical Society. 131, 4854-65.