簡易檢索 / 詳目顯示

研究生: 李明翰
論文名稱: Giant rotatory power at visible frequency by periodic planar gammadion-shaped metamaterials
指導教授: 嚴大任
口試委員: 黃勝廣
游智仁
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 74
中文關鍵詞: 極化旋轉能力超材料旋光性光學活性
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超材料是一種人工材料,其電磁性質在不同頻率的電磁波影響下,可呈現出迥異、甚至自然物質所沒有之電磁特性。在過去的二十年內,各式各樣的超材料應用被陸續的提出,例如:負折射率材料、隱形斗篷、完美吸收體、人工偏極板與波板、光減速系統。事實上,過去大多數的超材料的研究與應用頻段都是在微波頻段、兆赫頻段和紅外光頻段,而且可以被應用於通訊系統、電子系統和生物感測上。但是超材料位於光學頻段的研究卻鮮少被提及,因為其製造難度較高且電磁模擬常受制於電腦能力之不足。
    超材料應用的其中一種是人工光學偏極板,其研究涵蓋了微波頻段到可見光頻段,此應用被稱作旋光超材料且可被製作成立體式結構或平面型結構;平面型結構則被稱為平面型旋光超材料。近年來,科學家對位於光學頻段的平面型旋光超材料產生了研究興趣,因為它具有能被改良或被發展出嶄新光學性質的潛力。雖然旋光性超材料的組成物質並不具有任何的光學活性,但研究顯示旋光性仍舊可以藉由特殊設計的圖案產生。為了達成更強的光學活性或是發展出特殊光學性質,科學家研究了不同的材料與圖形結構,例如十字形、卍字形、絲帶形、隙環共振器形與奈米孔洞等。
    在此研究中,我們選擇了卍字形作為骨架,並設計出一些類卍字形且四軸對稱的圖案。這些複雜圖案在一階繞射中展現了比以往的簡單卍字形更為優異的光學性質。我們從電腦模擬開始,配合奈米製造技術:電子束微影,最後利用偏極計量測其位於可見光頻段的極化狀態改變。實驗結果顯示,這些複雜的類卍字形結構擁有非常大的極化旋轉角,且線寬、金屬膜厚度和圖形對於平面型旋光超材料的表現有相當重要的影響力。在研究之中,最佳的旋轉角達到了73°,對應之旋轉能力為1.33×106 deg/mm;此結果分別是過去類似研究的5倍與12倍。最後,透過電腦模擬,我們利用電場和磁矩分布來解釋可能的新反應機制。


    Contents 1 摘要 3 Abstract 4 List of Figures 6 List of Tables 9 Chapter 1. Introduction 10 Chapter 2. Fundamentals and Literature review 12 2.1 Polarization of light 12 2.2 Chiral materials 15 2.3 Chiral metamaterials 17 2.3.1 Frequency selective surface 19 2.3.2 Photonic crystal 21 2.3.3 Metamaterials 24 2.3.4 More applications of chiral metamaterials 26 2.4 Motivations 28 Chapter 3. Experimental process 30 3.1 CST Microwave StudioTM 30 3.2 Fabrication 31 3.2.1 Electron beam lithography (EBL) technique 32 3.2.2 E-gun evaporation and lift-off 35 3.3 Optical characterization 36 3.3.1 Instrumental setup 36 3.3.2 Stokes parameters 37 Chapter 4. Results and discussion 39 4.1 Simulation results 39 4.2 Fabrication results 45 4.3 Experimental results 49 4.4 Electric field, magnetic field distribution and discussion 60 Chapter 5. Conclusion 66 Appendix A 68 References 70

    [1] Fundamental of photonics, B. E. A. Saleh and M. C. Teich, 2nd edition (1991)
    [2] Optics, E. Hecht, 4th edtion (2002)
    [3] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Chiral metamaterials: simulations and experiments. Journal of Optics A: Pure and Applied Optics 11, 114003 (2009)
    [4] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, Optical activity in planar chiral metamaterials: Theoretical study. Physical Review A 76, 023811 (2007)
    [5] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures. Physical Review Letters 95, 227401 (2005)
    [6] F. Miyamaru and M. Hangyo, Strong optical activity in chiral metamaterials of metal screw hole arrays. Appied Physics Letters 89, 211105 (2006)
    [7] C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures. Nano Letters 11(10), 4400 (2011)
    [8] D. H. Kwon, P. L. Werner, and D. H. Werner, Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Optics Express 16(16), 11802 (2008)
    [9] G. Gilat, Chiral coefficient-a measure of the amount of structural chirality. Journal of Physics A 22(13), L545 (1989)
    [10] Optical Waves in Crystals, A. Yariv and P. Yeh, (1983)
    [11] T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hinger, and K. Hinrichs, Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount. Optics Express 3(4), 439 (2013)
    [12] C. L. Holloway, et al., An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas and Propagation Magzine 54(2), 10 (2012)
    [13] A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, Optical Manifestations of Planar Chirality. Physical Review Letters 90(10), 107404 (2003)
    [14] W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials. Applied Physics Letters 86, 231905 (2005)
    [15] W. Zhang, A. Potts, D. M. Bagnall, and B. R. Davidson, Large area all-dielectric planar chiral metamaterials by electron beam lithography. Microelectronics and Nanometer Structures 24, 1455 (2006)
    [16] W. Zhang, A Potts, and D. M. Bagnall, Giant optical activity in dielectric planar metamaterials with two-dimensional chirality. Journal of Optics A: A Pure an Applied Optics 8, 878 (2006)
    [17] B. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen1. Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array. Physical Review B 81, 115424 (2010)
    [18] S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, Optical activity in diffraction from a planar array of achiral nanoparticles. Physical Review A 79, 043819 (2009)
    [19] A. Potts, A. Papakostas, D.M. Bagnall, and N.I. Zheludev, Planar chiral meta-materials for optical applications. Microelectronic Engineering 73-74, 367 (2004)
    [20] T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirkoa, Optical activity in subwavelength-period arrays of chiral metallic particles. Applied Physics Letters 83(2), 234 (2003)
    [21] K. Jefimovs, N. Saitob, Yu. Inob, T. Valliusa, P. Vahimaaa, J. Turunena, R. Shimanob, M. Kauranenc, Y. Svirkoa, and M. Kuwata-Gonokami, Optical activity in chiral gold nanogratings. Microelectronic Engineering 78-79, 448 (2005)
    [22] S. Peng, and and G. M. Morris, Resonant scattering from two-dimensional gratings. Journal of the Optical Society of America A 13(5), 993 (1996)
    [23] X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission. Thin Solid Films 516, 8745 (2008)
    [24] K. Konishi, B. Bai, Y. Toya, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, Surface-plasmon enhanced optical activity in two-dimensional metal chiral networks. Optics Letters 37(21), 4446 (2012)
    [25] B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, Chiroptical Effects in Planar Achiral Plasmonic Oriented Nanohole Arrays. Nano Letters 12, 2357 (2012)
    [26] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Metamaterials and Negative Refractive Index. Science 305, 788 (2004)
    [27] Y. Ye, and S. He, 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Applied Physics Letters 96, 203501 (2010)
    [28] Z. Li, C. Humeyra, C. Evrim, J. Zhou, S. Costas M; O. Ekmel, Coupling effect between two adjacent chiral structure layers. Optics Express 18(6), 5375 (2010)
    [29] Y. J. Chiang, and T. J. Yen, A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Applied Physics Letters 102(1), 011129 (2013)
    [30] S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Negative Refractive Index in Chiral Metamaterials. Physical Review Letters 102, 023901 (2009)
    [31] M. Decker, R. Zhou, C. M. Soukoulis; S. Linden; M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity. Optics Letters 35(10), 1593 (2010)
    [32] M. Decke, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, M. Wegener, Strong optical activity from twisted-cross photonic metamaterials. Optics Letters 34(16), 2501 (2009)
    [33] E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, Metamaterials: Optical Activity without Chirality. Physical Review Letters 102, 113902 (2009)
    [34] J. B. Pendry, A Chiral Route to Negative Refraction. Science 306, 1353 (2004)
    [35] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Metamaterial with negative index due to chirality. Physical Review B 79, 035407 (2009)
    [36] J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Negative refractive index due to chirality. Physical Review B 79, 121104(R) (2009)
    [37] Y. Liu, Y. Cheng, Z. Z. Cheng, A numerical parameter study of chiral metamaterial based on complementary U-shaped structure in infrared region. Optik 125(3), 1316 (2014)
    [38] J. Parsons, and A. Polman, A copper negative index metamaterial in the visible/near-infrared. Applied Physics Letters 99, 161108 (2011)
    [39] Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner. and E. Hasman, Observation of Optical Spin Symmetry Breaking in Nanoapertures. Nano Letters 9(8), 3016 (2009)
    [40] J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Physical Review B 86, 035448 (2012)
    [41] K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures. Physical Review Letters 106, 057402 (2011)
    [42] T. Cao, L. Zhang, R. E. Simpson, C. Wei, M. J. Cryan, Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Optics Express 21(23), 27841 (2013)
    [43] S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation. Thin Solid Films 335(1-2), 1 (1998)
    [44] Handbook of Optical Constant of Solids, E. D. Palik, (1985)
    [45] A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures. Physical Review Letters 91(24), 247404 (2003)
    [46] M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Stationary Surface Plasmons on a Zero-Order Metal Grating. Physical Review Letters 80 (25), 5667 (1998)
    [47] I. R. Hooper, and J. R. Sambles, Broadband polarization-converting mirror for the visible region of the spectrum. Optics Letters 27(24), 2152 (2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE