簡易檢索 / 詳目顯示

研究生: 李惲岳
Lee, Yun-Yueh
論文名稱: 適用於多輸入多輸出毫米波系統之混合訊號預編碼處理器設計與實作
Design and Implementation of a Mixed-Signal Precoding Processor for Millimeter Wave MIMO Systems
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 蔡佩芸
Tsai, Pei-Yun
陳喬恩
Chen, Chiao-En
吳仁銘
Wu, Jen-Ming
黃元豪
Huang, Yuan-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 77
中文關鍵詞: 毫米波系統正交匹配追蹤混合預編碼多輸入多輸出
外文關鍵詞: Millimeter Wave System, OMP, Hybrid Precoding, MIMO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毫米波無限通訊系統能在短距離的傳輸中,提供高資料流的傳輸。由於毫米波的波長較小,使得傳輸端與接收端能使用較大量的天線傳輸資料,減輕毫米波訊號衰退較強所造成的影響。此外,藉由多資料流系統的預編碼的技術,能夠進一步的提升傳輸的品質。然而,因毫米波系統能使用較多的天線數目,使得射頻電路的複雜度也隨之提高。為了降低硬體的複雜度,預編碼處理可由類比和數位電路的間接處理,而以較低複雜度的電路來實現。
    這篇論文題出了新的射頻/基頻預編碼系統之建構方法,不僅減少了原先預編碼重建之演算法的運算複雜度,還能給予較高的硬體平行度。最後,此研究利用TSMC90GUTM製程來實作本論文所提出的演算法之預編碼重建處理器。此處理器適用於8x8多輸入多輸出毫米波系統,能支援一至四個資料流的傳輸,共四種模式。當電源供應為1V時,此處理器的操作頻率為167 MHz,且功率消耗為243.2 mW。另外,此處理器的核心面積為3.94 mm2。當資料流為ㄧ至四時,此處理器分別能在每秒運算6.7 M、6.7 M、4.9 M、4 M個不同的通道矩陣。


    A millimeter wave (mmWave) communication system provides multi-Gbps data rate in the short-distance transmission. Due to the small wavelengths of millimeter waves, the transceiver is able to use large antenna arrays to alleviate the serious signal attenuation. Furthermore, the link performance can be improved by adopting precoding technology in the multiple data stream transmission. However, the complexity of radio frequency chains (RF) grows even higher with large antenna arrays in the mmWave system. To reduce the hardware cost, the precoding circuit can be jointly designed in both the analog and digital domains and realized by simpler circuits. This thesis proposes a new method of building the joint RF and baseband precoder to reduce the computation complexity of the original precoder reconstruction algorithm and enable high parallelism hardware architecture. Moreover, the proposed precoder reconstruction algorithm is designed and implemented by using TSMC 90nm UTM CMOS technology. The proposed precoder reconstruction processor supports the transmissions of 1 to 4 data streams for 8x8 mmWave MIMO systems. The operating frequency of this chip is 167 MHz and power consumption is 243.2 mW when supply voltage is 1 V. The core area of post-layout result is about 3.94 mm$^2$. The proposed processor can achieve 4 M, 4.9 M, 6.7 M, 6.7 M channel-matrices per second in four-, three-, two-, and one-stream modes, respectively.

    1 Introduction 1 1.1 Millimeter Wave MIMO Systems . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Transceiver Design for the Millimeter Wave Single-User MIMO Chan- nel 7 2.1 Millimeter Wave Channel Model . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 SVD-Based Precoding Method . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 10 2.2.2 SVD-Based Precoding Scheme . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Superliner-Convergence SVD Algorithm . . . . . . . . . . . . . . 13 2.3 Joint RF/Baseband Precoding Scheme . . . . . . . . . . . . . . . . . . . 16 2.3.1 Joint RF/Baseband Precoding Scheme . . . . . . . . . . . . . . . 16 2.3.2 Precoder Reconstruction via Simultaneous Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Proposed Precoder/Combiner Reconstruction Algorithm 23 3.1 Matrix-Inversion-Bypass Orthogonal Matching Pursuit Algorithm . . . . 24 3.2 Proposed Parallel-Index-Selection Matrix-Inversion-Bypass Simultaneous Orthogonal Matching Pursuit Algorithm . . . . . . . . . . . . . . . . . . 29 3.2.1 Proposed Parallel-Index-Selection Matrix-Inversion-Bypass Simultaneous Orthogonal Matching Pursuit Algorithm . . . . . . . . . 29 3.2.2 Generation of Array Response Vectors . . . . . . . . . . . . . . . 33 3.2.3 Computation Complexity and Performance Analysis . . . . . . . . 34 3.2.4 Algorithm Modification for Hardware Implementation . . . . . . . 39 4 VLSI Architecture Design 41 4.1 System Block Diagram and Simulation Environment . . . . . . . . . . . . 41 4.2 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Index Selection Unit . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Reconstruction Unit . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Timing Diagrams of the Proposed Processor . . . . . . . . . . . . . . . . 55 5 Implementation Result 59 5.1 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Chip Layout and Specification . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Chip Simulation and Verification . . . . . . . . . . . . . . . . . . . . . . 65 5.4 Measurement Consideration . . . . . . . . . . . . . . . . . . . . . . . . . 69 6 Conclusion and Future Work 71 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    [1] S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter
    wave technology: Potentials and technical challenges.” EURASIP J. Wireless
    Comm. and Networking, vol. 2007, 2007.
    [2] C. Doan, S. Emami, D. Sobel, A. Niknejad, and R. Brodersen, “Design considerations
    for 60 ghz cmos radios,” Communications Magazine, IEEE, vol. 42, no. 12,
    pp. 132–140, 2004.
    [3] R. Daniels and R. Heath, “60 ghz wireless communications: emerging requirements
    and design recommendations,” Vehicular Technology Magazine, IEEE, vol. 2, no. 3,
    pp. 41–50, 2007.
    [4] C. Sheldon, M. Seo, E. Torkildson, M. Rodwell, and U. Madhow, “Four-channel
    spatial multiplexing over a millimeter-wave line-of-sight link,” in Microwave Sym-
    posium Digest, 2009. MTT ’09. IEEE MTT-S International, 2009, pp. 389–392.
    [5] L. Ding, R. Liu, B. Jiang, and X. Gao, “Limited feedback unitary precoding using
    improved euclidean distance metrics for spatial multiplexing systems,” in Wireless
    Communications and Signal Processing (WCSP), 2010 International Conference
    on, 2010, pp. 1–6.
    [6] M. Vu and A. Paulraj, “Mimo wireless linear precoding – using csit to improve link
    performance,” 2007.
    [7] O. Ayach, R. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity
    precoding for large millimeter wave mimo systems,” in Communications (ICC),
    2012 IEEE International Conference on, Jun. 2012, pp. 3724–3729.
    [8] A. Alkhateeb, O. El Ayach, G. Leus, and R. Heath, “Hybrid precoding for millimeter
    wave cellular systems with partial channel knowledge,” in Information Theory
    and Applications Workshop (ITA), 2013, 2013.
    [9] X. Zhang, A. Molisch, and S.-Y. Kung, “Variable-phase-shift-based rf-baseband
    codesign for mimo antenna selection,” Signal Processing, IEEE Transactions on,
    vol. 53, no. 11, pp. 4091–4103, 2005.
    [10] J. Nsenga, A. Bourdoux, and F. Horlin, “Mixed analog/digital beamforming for
    60 ghz mimo frequency selective channels,” in Communications (ICC), 2010 IEEE
    International Conference on, 2010, pp. 1–6.
    [11] J. Tropp, A. Gilbert, and M. Strauss, “Simultaneous sparse approximation via
    greedy pursuit,” in Acoustics, Speech, and Signal Processing, 2005. Proceedings.
    (ICASSP ’05). IEEE International Conference on, vol. 5, 2005, pp. v/721–v/724
    Vol. 5.
    [12] G. Huang and L. Wang, “High-speed signal reconstruction with orthogonal matching
    pursuit via matrix inversion bypass,” in Signal Processing Systems (SiPS), 2012
    IEEE Workshop on, 2012, pp. 191–196.
    [13] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”
    Selected Areas in Communications, IEEE Journal on, vol. 5, no. 2, pp. 128–137,
    1987.
    [14] H. Xu, V. Kukshya, and T. Rappaport, “Spatial and temporal characteristics of 60-
    ghz indoor channels,” Selected Areas in Communications, IEEE Journal on, vol. 20,
    no. 3, pp. 620–630, 2002.
    [15] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling the statistical
    time and angle of arrival characteristics of an indoor multipath channel,” Selected
    Areas in Communications, IEEE Journal on, vol. 18, no. 3, pp. 347–360, 2000.
    [16] P. F. M. Smulders and L. Correia, “Characterisation of propagation in 60 ghz radio
    channels,” Electronics Communication Engineering Journal, vol. 9, no. 2, pp. 73–
    80, 1997.
    [17] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressed channel sensing: A
    new approach to estimating sparse multipath channels,” Proceedings of the IEEE,
    vol. 98, no. 6, pp. 1058–1076, 2010.
    [18] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of mimo
    channels,” Selected Areas in Communications, IEEE Journal on, vol. 21, no. 5, pp.
    684–702, 2003.
    [19] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.). Baltimore, MD,
    USA: Johns Hopkins University Press, 1996.
    [20] N. Hemkumar and J. Cavallaro, “A systolic vlsi architecture for complex svd,”
    in Circuits and Systems, 1992. ISCAS ’92. Proceedings., 1992 IEEE International
    Symposium on, vol. 3, 1992, pp. 1061–1064 vol.3.
    [21] C.-Z. Zhan, Y.-L. Chen, and A.-Y. Wu, “Iterative superlinear-convergence svd
    beamforming algorithm and vlsi architecture for mimo-ofdm systems,” Signal Pro-
    cessing, IEEE Transactions on, vol. 60, no. 6, pp. 3264–3277, 2012.
    [22] D. Das Sarma and D. Matula, “Faithful bipartite rom reciprocal tables,” in Com-
    puter Arithmetic, 1995., Proceedings of the 12th Symposium on, 1995, pp. 17–28.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE