簡易檢索 / 詳目顯示

研究生: 洪韻婷
論文名稱: 奈米尺度光與物質作用之增益和控制Part 1: 自組裝金奈米粒子表面增益拉曼效應之比較研究Part 2: 電漿奈米電路中模態之轉換
Enhancement and Control of Nanoscale Light-Matter InteractionPart 1: Study of Surface Enhanced Raman Effect of Self-Assembled Gold Nanoparticles Part 2: Mode Conversion in Plasmonic Nanocircuits
指導教授: 黃哲勳
口試委員: 張之威
黃承彬
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 63
中文關鍵詞: 電漿子表面增益拉曼光譜光與物質之作用電漿奈米電路電漿模態轉換器金奈米粒子
外文關鍵詞: Plasmonic, SERS, light-matter interaction, plasmonic nanocircuit, plasmonic mode converter, gold nanoparticle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增益拉曼光譜(SERS)是以粗糙的金屬表面或是金屬奈米粒子來增強待測物的拉曼散射,此技術具有相當高的靈敏度且已被廣泛應用,然而真正的SERS機制卻仍有待商榷。因此本論文的第一部分主要研究與比較具有不同的形貌、尺寸和晶面的自組裝金奈米粒子,在作為表面增益拉曼光譜的基材時,其拉曼訊號的相對強弱,並且提出理論假設,從金奈米粒子的近場強度、接觸面積以及不同晶面與苯硫酚分子的鍵結能來解釋實驗上所得到的拉曼散射強度增益值。實驗上發現菱形20面體的金奈米粒子具有最強的SERS訊號,而理論上推演出不同晶面之奈米金粒子的SERS增益值也與實驗數據部分吻合,此研究亦提供了日後選用SERS基材的準則。
    另外,為了能夠調控光場與物質之作用,本論文亦研究於電漿奈米電路中設計模態轉換器,利用控制電漿奈米雙線傳輸線上電漿子的相位,來達到被動式或主動式的調控波導模態,進而控制光場之阻抗,未來可用於調控奈米尺度下光和物質間的作用。藉由調控雙線傳輸線之長度或寬度以及環境折射率,其模態轉換器成功地於橫向電波模態(TE mode)或橫向磁波模態(TM mode)之間自由轉換。為了能夠實現模態轉換器以及觀察種種光學現象,本論文中亦建立了自組裝的共軛焦雷射掃描顯微鏡以及近場光學掃描顯微鏡。


    Surface enhanced Raman spectroscopy (SERS) has ultrahigh sensitivity and is now wide used. SERS makes use of rough metal surfaces or metallic nanoparticles to enhance the Raman scattering of a specimen. However, the mechanism of the enhancement effect is still open to question. Thus, in the first part of the thesis, we try to study and compare the SERS signals from thiophenol molecules attached to self-assembled gold nanoparticles with distinct shape, size and facet. We also make an assumption to explain the experimental data from the aspect of electromagnetic theory by analyzing the near-field intensity of gold nanoparticles and chemical effect by calculating the surface area of gold nanoaprticles and binding energies of thiophenol molecules adsorbed on different crystal facets. We discovered that rhombic dodecahedron gold nanoparticles with facet have the largest Raman scattering intensity and the comparative SERS intensities predicted by theoretical calculations also consist with the experimental data. This research provides a criterion of choosing SERS-active substrates hereafter.
    Besides, for the sake of controlling the interaction between light with matter, we propose and design mode converters in a plasmonic nanocircuit by manipulating the phase of surface plasmon on TWTL to achieve passive or active control of the guided modes and then it is capable of controlling the impedance of the optical field. Hence, it offers the possibility to handle nanoscale light-matter interaction. The mode conversion transforms successfully at will between transverse magnetic (TM) mode and transverse electric (TE) mode by means of differing in the path length or cross section between two wires as well as the surrounding refractive index. To realize the mode converters and monitor the optical phenomena, I build up an optical system containing a home-made confocal laser scanning microscope and a near-field scanning microscope.

    摘要 i Abstract ii 誌謝 iv Table of Contents v List of Figures vii List of Tables xii Chapter 1 Introduction 1 1.1. Surface plasmon polaritons 2 1.2. Finite-Difference Time-Domain Method 6 Working Principle 7 Chapter 2 Study of Surface Enhanced Raman Effect of Self-Assembled Gold Nanoparticles 11 2.1. Sample preparation 12 2.1.1. Synthesis of Au seed particles 12 2.1.2. Synthesis of Au nanoparticles 12 2.1.3. SERS sample preparation, measurement, and weighting procedure 14 2.2. Assumption for SERS Enhancement 18 2.3. Results and Discussion 22 Chapter 3 Mode Conversion in Plasmonic Nanocircuits 24 3.1. Analysis on plasmonic waveguiding 26 3.1.1. Waveguiding on a single nanowire 27 3.1.2. Waveguiding on a plasmonic TWTL 30 3.2. Mode conversion 34 3.2.1. Conversion mechanisms 34 3.2.2. Conversion efficiency 37 3.3. Applications in a complex integrated nanocircuit. 40 3.4. Perspective on nanoscale light-matter interaction 46 3.5. Results and Discussion 48 Chapter 4 Conclusion and Outlook 49 Appendix: Optical Setup Containing Home-made Confocal Laser Scanning Microscope and Near-Field Scanning Microscope 51 Configuration of the Optical Setup 52 Reference 57

    1 Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Röckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L. & Xu, C. “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656, (1998).
    2 Schwille, P.; Haupts, U.; Maiti, S. & Webb, W. W. “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophysical Journal 77, 2251-2265, (1999).
    3 Pandian Senthil, K.; Isabel, P.-S.; Benito, R.-G.; Abajo, F. J. G. d. & Luis, M. L.-M. “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606, (2008).
    4 Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R. n. A.; Kornowski, A.; Weller, H. & Liz-Marzán, L. M. “Tuning size and sensing properties in colloidal gold nanostars,” Langmuir 26, 14943-14950, (2010).
    5 Hofmann, A.; Schmiel, P.; Stein, B. & Graf, C. “Controlled formation of gold nanoparticle dimers using multivalent thiol ligands,” Langmuir 27, 15165-15175, (2011).
    6 Edgar, J. A.; McDonagh, A. M. & Cortie, M. B. “Formation of gold nanorods by a stochastic “popcorn” mechanism,” ACS Nano 6, 1116-1125, (2012).
    7 Anderson, L. J. E.; Payne, C. M.; Zhen, Y.-R.; Nordlander, P. & Hafner, J. H. “A tunable plasmon resonance in gold nanobelts,” Nano Lett. 11, 5034-5037, (2011).
    8 Lee, K.; Kim, M. & Kim, H. “Catalytic nanoparticles being facet-controlled,” Journal of Materials Chemistry 20, 3791-3798, (2010).
    9 Goubet, N.; Ding, Y.; Brust, M.; Wang, Z. L. & Pileni, M.-P. “A way to control the gold nanocrystals size: Using seeds with different sizes and subjecting them to mild annealing,” ACS Nano 3, 3622-3628, (2009).
    10 Wang, F.; Han, Y.; Lim, C. S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M. & Liu, X. “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061-1065, (2010).
    11 Tao, A. R.; Habas, S. & Yang, P. “Shape control of colloidal metal nanocrystals,” Small 4, 310-325, (2008).
    12 Adair, J. H.; Parette, M. P.; Altınoğlu, E. I. & Kester, M. “Nanoparticulate alternatives for drug delivery,” ACS Nano 4, 4967-4970, (2010).
    13 Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J. & Van Duyne, R. P. “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442-453, (2008).
    14 Mühlschlegel, P.; Eisler, H. J.; Martin, O. J. F.; Hecht, B. & Pohl, D. W. “Resonant optical antennas,” Science 308, 1607-1609, (2005).
    15 Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R. & van Hulst, N. F. “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930-933, (2010).
    16 Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Mullen, K. & Moerner, W. E. “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654-657, (2009).
    17 Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S. & Brongersma, M. L. “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193-204, (2010).
    18 Weeber, J. C.; Krenn, J. R.; Dereux, A.; Lamprecht, B.; Lacroute, Y. & Goudonnet, J. P. “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411, (2001).
    19 Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E. & Ebbesen, T. W. “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802, (2005).
    20 Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E.; Laluet, J.-Y. & Ebbesen, T. W. “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511, (2006).
    21 Verhagen, E.; Spasenović, M.; Polman, A. & Kuipers, L. “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904, (2009).
    22 Zhang, S.; Wei, H.; Bao, K.; Håkanson, U.; Halas, N. J.; Nordlander, P. & Xu, H. “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801, (2011).
    23 Rewitz, C.; Keitzl, T.; Tuchscherer, P.; Huang, J.-S.; Geisler, P.; Razinskas, G.; Hecht, B. & Brixner, T. “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12, 45-49, (2012).
    24 Zhang, Y.; Grady, N. K.; Ayala-Orozco, C. & Halas, N. J. “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519-5523, (2011).
    25 Srituravanich, W.; Fang, N.; Sun, C.; Luo, Q. & Zhang, X. “Plasmonic nanolithography,” Nano Lett. 4, 1085-1088, (2004).
    26 Sundaramurthy, A.; Schuck, P. J.; Conley, N. R.; Fromm, D. P.; Kino, G. S. & Moerner, W. E. “Toward nanometer-scale optical photolithography:  Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355-360, (2006).
    27 Chen, H.-Y.; He, C.-L.; Wang, C.-Y.; Lin, M.-H.; Mitsui, D.; Eguchi, M.; Teranishi, T. & Gwo, S. “Far-field optical imaging of a linear array of coupled gold nanocubes: Direct visualization of dark plasmon propagating modes,” ACS Nano 5, 8223-8229, (2011).
    28 Ozbay, E. “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193, (2006).
    29 Ebbesen, T. W.; Genet, C. & Bozhevolnyi, S. I. “Surface-plasmon circuitry,” Phys. Today 61, 44-50, (2008).
    30 Huang, J.-S.; Feichtner, T.; Biagioni, P. & Hecht, B. “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897-1902, (2009).
    31 Ming, T.; Zhao, L.; Yang, Z.; Chen, H.; Sun, L.; Wang, J. & Yan, C. “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896-3903, (2009).
    32 Nie, S. & Emory, S. R. “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106, (1997).
    33 Wei, H.; Hao, F.; Huang, Y.; Wang, W.; Nordlander, P. & Xu, H. “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle−nanowire systems,” Nano Lett. 8, 2497-2502, (2008).
    34 Barnes, W. L.; Dereux, A. & Ebbesen, T. W. “Surface plasmon subwavelength optics,” Nature 424, 824-830, (2003).
    35 Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V. & Echenique, P. M. “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1, (2007).
    36 Kane, Y. “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302-307, (1966).
    37 Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J. & Nordlander, P. “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718, (2008).
    38 McMahon, J.; Henry, A.-I.; Wustholz, K.; Natan, M.; Freeman, R.; Van Duyne, R. & Schatz, G. “Gold nanoparticle dimer plasmonics: Finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Analytical and Bioanalytical Chemistry 394, 1819-1825, (2009).
    39 Gopinath, A.; Boriskina, S. V.; Premasiri, W. R.; Ziegler, L.; Reinhard, B. r. M. & Dal Negro, L. “Plasmonic nanogalaxies: Multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922-3929, (2009).
    40 Wu, H.-L.; Tsai, H.-R.; Hung, Y.-T.; Lao, K.-U.; Liao, C.-W.; Chung, P.-J.; Huang, J.-S.; Chen, I. C. & Huang, M. H. “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive sers substrates,” Inorg. Chem. 50, 8106-8111, (2011).
    41 Lao, K.-u. & Yu, C.-h. “A computational study of unique properties of pillar[n]quinones: Self-assembly to tubular structures and potential applications as electron acceptors and anion recognizers,” Journal of Computational Chemistry 32, 2716-2726, (2011).
    42 Yang, N.; Tang, Y. & Cohen, A. E. “Spectroscopy in sculpted fields,” Nano Today 4, 269-279, (2009).
    43 Berweger, S.; Atkin, J. M.; Olmon, R. L. & Raschke, M. B. “Light on the tip of a needle: Plasmonic nanofocusing for spectroscopy on the nanoscale,” J. Phys. Chem. Lett. 3, 945-952, (2012).
    44 Novotny, L. & van Hulst, N. “Antennas for light,” Nat. Photonics 5, 83-90, (2011).
    45 Biagioni, P.; Huang, J.-S. & Hecht, B. “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402, (2012).
    46 Wen, J.; Romanov, S. & Peschel, U. “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925-5932, (2009).
    47 Huang, J. S.; Voronine, D. V.; Tuchscherer, P.; Brixner, T. & Hecht, B. “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441, (2009).
    48 Krenz, P. M.; Olmon, R. L.; Lail, B. A.; Raschke, M. B. & Boreman, G. D. “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express 18, 21678-21686, (2010).
    49 Schnell, M.; Alonso Gonzalez, P.; Arzubiaga, L.; Casanova, F.; Hueso, L. E.; Chuvilin, A. & Hillenbrand, R. “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283-287, (2011).
    50 Wen, J.; Banzer, P.; Kriesch, A.; Ploss, D.; Schmauss, B. & Peschel, U. “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98, 101109-101103, (2011).
    51 Dionne, J. A.; Lezec, H. J. & Atwater, H. A. “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928-1932, (2006).
    52 Kern, J.; Grossmann, S.; Tarakina, N. V.; Häckel, T.; Emmerling, M.; Kamp, M.; Huang, J.-S.; Biagioni, P.; Prangsma, J. C. & Hecht, B. “Atomic-scale confinement of optical fields,” arXiv, http://arxiv.org/abs/1112.5008v2, (2011).
    53 Bergman, D. J. & Stockman, M. I. “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402, (2003).
    54 Noginov, M. A.; Podolskiy, V. A.; Zhu, G.; Mayy, M.; Bahoura, M.; Adegoke, J. A.; Ritzo, B. A. & Reynolds, K. “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385-1392, (2008).
    55 De Leon, I. & Berini, P. “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382-387, (2010).
    56 Gather, M. C.; Meerholz, K.; Danz, N. & Leosson, K. “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457-461, (2010).
    57 Krasavin, A. V.; Vo, T. P.; Dickson, W.; Bolger, P. d. M. & Zayats, A. V. “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231-2235, (2011).
    58 Berini, P. & De Leon, I. “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16-24, (2012).
    59 Kühn, S.; Håkanson, U.; Rogobete, L. & Sandoghdar, V. “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402, (2006).
    60 Chang, D. E.; Sorensen, A. S.; Demler, E. A. & Lukin, M. D. “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807-812, (2007).
    61 FDTD solutions, Lumerical Solutions Inc., Vancouver, Canada. http://www.lumerical.com/.
    62 Johnson, P. B. & Christy, R. W. “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379, (1972).
    63 Novotny, L. & Hafner, C. “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094-4106, (1994).
    64 Takahara, J.; Yamagishi, S.; Taki, H.; Morimoto, A. & Kobayashi, T. “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475-477, (1997).
    65 Stockman, M. I. “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404, (2004).
    66 MacDonald, K. F.; Samson, Z. L.; Stockman, M. I. & Zheludev, N. I. “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58, (2009).
    67 Liu, Y.; Zentgraf, T.; Bartal, G. & Zhang, X. “Transformational plasmon optics,” Nano Lett. 10, 1991-1997, (2010).
    68 Verhagen, E.; Kuipers, L. & Polman, A. “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett. 10, 3665-3669, (2010).
    69 Gao, Y.; Gan, Q.; Xin, Z.; Cheng, X. & Bartoli, F. J. “Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5, 9836-9844, (2011).
    70 Nordlander, P.; Oubre, C.; Prodan, E.; Li, K. & Stockman, M. I. “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903, (2004).
    71 Huang, J.-S.; Kern, J.; Geisler, P.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni, P. & Hecht, B. “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105-2110, (2010).
    72 Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S. & Moerner, W. E. “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402, (2005).
    73 Chandrasekhar, S.; Vengurlekar, A. S.; Karulkar, V. T. & Roy, S. K. “Temperature, light intensity and microstructure dependence of the refractive index of polycrystalline silicon films,” Thin Solid Films 169, 205-212, (1989).
    74 True, E. M. & McCaughan, L. “Large nonresonant light-induced refractive-index changes in thin films of amorphous arsenic sulfide,” Opt. Lett. 16, 458-460, (1991).
    75 Large, N.; Abb, M.; Aizpurua, J. & Muskens, O. L. “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741-1746, (2010).
    76 Cavalleri, A.; Tóth, C.; Siders, C. W.; Squier, J. A.; Ráksi, F.; Forget, P. & Kieffer, J. C. “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401, (2001).
    77 Seo, M.; Kyoung, J.; Park, H.; Koo, S.; Kim, H.-S.; Bernien, H.; Kim, B. J.; Choe, J. H.; Ahn, Y. H.; Kim, H.-T.; Park, N.; Park, Q. H.; Ahn, K. & Kim, D.-S. “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064-2068, (2010).
    78 Park, S. Y. & Stroud, D. “Splitting of surface plasmon frequencies of metal particles in a nematic liquid crystal,” Appl. Phys. Lett. 85, 2920-2922, (2004).
    79 Dickson, W.; Wurtz, G. A.; Evans, P. R.; Pollard, R. J. & Zayats, A. V. “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281-286, (2008).
    80 Berthelot, J.; Bouhelier, A.; Huang, C.; Margueritat, J.; Colas-des-Francs, G.; Finot, E.; Weeber, J.-C.; Dereux, A.; Kostcheev, S.; Ahrach, H. I. E.; Baudrion, A.-L.; Plain, J.; Bachelot, R.; Royer, P. & Wiederrecht, G. P. “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914-3921, (2009).
    81 Maier, S. A. Plasmonics: Fundamentals and applications. (Springer, 2007).
    82 Guerrero-Martínez, A.; Grzelczak, M. & Liz-Marzán, L. M. “Molecular thinking for nanoplasmonic design,” ACS Nano 6, 3655-3662, (2012).
    83 Greffet, J.-J.; Laroche, M. & Marquier, F. “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett. 105, 117701, (2010).
    84 Chang, D. E.; Sørensen, A. S.; Hemmer, P. R. & Lukin, M. D. “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002, (2006).
    85 Boiron, A. M.; Lounis, B. & Orrit, M. “Single molecules of dibenzanthanthrene in n-hexadecane,” J. Chem. Phys. 105, 3969-3974, (1996).
    86 T. Basché, W. E. M., M. Orrit, U. P. Wild. Single-molecule optical detection, imaging and spectroscopy. (Wiley-VCH, 1997).
    87 Huang, J.-S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J. C.; Wu, X.; Feichtner, T.; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni, P.; Sennhauser, U. & Hecht, B. “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150, (2010).
    88 Pohl, D. W.; Rodrigo, S. G. & Novotny, L. “Stacked optical antennas,” Appl. Phys. Lett. 98, 023111-023113, (2011).
    89 Minsky, M. Microscopy apparatus. US3013467 (1957).
    90 Bharadwaj, P.; Beams, R. & Novotny, L. “Nanoscale spectroscopy with optical antennas,” Chemical Science 2, 136-140, (2011).
    91 Novotny, L. “From near-field optics to optical antennas,” Phys. Today 64, 47-52, (2011).
    92 Stöckle, R. M.; Suh, Y. D.; Deckert, V. & Zenobi, R. “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136, (2000).
    93 Steidtner, J. & Pettinger, B. “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100, 236101, (2008).
    94 Wollny, G.; Bründermann, E.; Arsov, Z.; Quaroni, L. & Havenith, M. “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, 7453-7459, (2008).
    95 Yasushi, O.; Toshihiko, K.; Mitsuru, O.; Seiji, H.; Haruyuki, I. & Motohiro, N. “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Science and Technology of Advanced Materials 8, 181, (2007).
    96 Biagioni, P.; Celebrano, M.; Savoini, M.; Grancini, G.; Brida, D.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Duò, L.; Hecht, B.; Cerullo, G. & Finazzi, M. “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411, (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE