簡易檢索 / 詳目顯示

研究生: 田俊文
Chun-Wen Tien
論文名稱: 以基因轉殖大腸桿菌ABLE C製備硫化鎘奈米粒子
Biosynthesis of Cadmium Sulfide Nanoparticle in Gene Modified Escherichia coli ABLE C
指導教授: 胡育誠
Yu-Chen Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 硫化鎘奈米粒子Glutathione大腸桿菌生物法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以基因轉殖大腸桿菌進行CdS奈米粒子的製備,研究內容結合生物科技以及奈米技術兩個領域。CdS為擁有直接能隙的II-V半導體材料,粒徑小於6 nm以下時,有明顯的量子侷限效應,被視為新一代的LED發光材料。除此之外,CdS奈米粒子應用於各類感測器以及生物螢光標定中的研究也相當的多。
    本研究首次利用基因工程的手法,將gshA及gshB基因片段以重組載體送入細胞中,分別表現glutathione合成酵素γ-GCS及GS,藉此促進大腸桿菌中glutathione的含量,來量產CdS奈米粒子。GSH分子為生物合成CdS奈米粒子之關鍵,其含量之增加有助於細胞生成CdS粒子。我們證實,大腸桿菌ABLE C生成之CdS奈米粒子粒徑介於2~5 nm之間。經過基因轉殖的菌株,細胞中GS合成酵素含量增加,細胞中CdS粒子產量有顯著提升。
    粒子特性方面,基因轉殖大腸桿菌所生產的CdS奈米粒子由於粒子表面有較多的GSH包覆,因此在水溶液中分散性更為提升,而重組蛋白的產生對所生成CdS的粒徑無太大影響。在此我們證明了以大腸桿菌生產CdS奈米粒子的可行性,透過基因轉殖細胞能更近一步增進產量和改善產物性質。在實驗過程中,我們也證實了GSH含量的多寡,確實引響細胞生產CdS的能力,對於此系統背後生理機制的釐清也有所助益。


    Cadmium sulfide nanoparticles were synthesized intracellularly in gene modified Escherichia coli ABLE C. The nanoparticles, a known semiconducting material, which have unique optical and electronic properties, have potential for application in the emerging field of nanoelectronics. To produce nanomaterial cheaply and efficiently, biological methods of synthesis are being explored. Schizosaccharomyces pombe were found having the capacity to synthesize CdS nanoparticles intracellularly in 1983. Recently, in 2004, Sweeney found that E. coli also have ability to synthesize CdS nanoparticles. Morever, in his study, he pointed out that the cellular glutathione can enhance the formation of nanoparticles. Inspried by Sweeney, we constructed a gene modified E. coli ABLE C which could use for glutathione overproduction and attempt to figure out how this parameter can enhance the synthesis of nanoparticles within bacterial cells. Our results showed that nanoparticles biosynthesis increased about 1.6 –fold in gene modified cells compared to wild type cells. HRTEM data showed that the nanoparticles had a Wurtzite hexagonal lattice structure and most of the nanoparticles were in the size range of 2-5 nm. We also observed that nanoparticles synthesized in gene modified cells were dispersed better in water than these in wild type cells. The well dispersion behavior was due to more glutathione coated on the nanoparticles. To our best knowledge, this is the first report using genetic modification to enhance biosynthsis of CdS nanoparticles and to unravel the siginificance of glutathione in this procedure. By understanding parameters of nanoparticles synthesis, it might be possible to modulate the properties of biosynthesized nanopartilces, such as size, shae, and crystal structure.

    目錄 I 圖目錄 .V 表目錄.VI 第1章 第一章:緒論 1 第2章 第二章:文獻回顧 2 2-1 :半導體發光材料 2 2-2 :奈米材料之簡介 5 2-2-1 :奈米粒子 5 2-2-2 :奈米粒子的製備方式 6 2-2-3 :奈米科技之發展 7 2-3 硫化鎘(CdS)簡介 8 2-3-1 CdS性質 8 2-3-2 CdS的應用 8 2-3-3 CdS奈米粒子的製備方式 9 2-4 基因轉殖大腸桿菌製備CdS奈米粒子 12 2-4-1 以生物系統製備CdS奈米粒子 12 2-4-2 大腸桿菌表現系統 14 2-4-3 Glutathione (GSH) 15 2-5 研究動機及目的 16 第3章 第三章:實驗材料與方法 18 3-1 實驗材料 18 3-1-1 菌株 18 3-1-2 表現載體 18 3-1-3 藥品與酵素 18 3-2 大腸桿菌重組蛋白表現系統 18 3-2-1 大腸桿菌培養 18 3-2-2 表現載體之改良 19 3-2-3 連鎖聚合酶反應(PCR reaction) 19 3-2-4 轉型反應(Transformation) 20 3-2-5 大腸桿菌質體之少量抽取 21 3-2-6 重組質體之確認 21 3-2-7 重組蛋白之誘導表現 21 3-2-8 蛋白質電泳 22 3-2-9 蛋白質定量分析 22 3-2-10 Glutathione (GSH)之定量 23 3-2-11 細胞培養基成分之調整 24 3-2-12 細胞於重金屬環境壓力下的GSH表現反應 24 3-3 硫化鎘奈米粒子合成反應與分析 25 3-3-1 CdS奈米粒子生成反應 25 3-3-2 細胞破碎處理 25 3-3-3 CdS奈米粒子定量 26 3-3-4 穿透式電子顯微鏡觀察 27 3-3-5 高解析穿透式電子顯微鏡 27 第4章 第四章:實驗結果與討論 31 4-1 重組大腸桿菌之建構 31 4-2 轉殖基因之表現 32 4-2-1 轉型後細胞生長曲線 32 4-2-2 SDS-PAGE蛋白質電泳分析重組蛋白之表現 33 4-3 GSH與細胞生成CdS能力之探討 35 4-3-1 重金屬環境下GSH合成途徑之改變 35 4-3-2 CdS奈米粒子生成量之提升 36 4-3-3 培養基添加物對GSH含量之影響 37 4-3-4 GS酵素表現對細胞內GSH含量之影響 39 4-3-5 GS酵素表現對細胞合成CdS奈米粒子之影響 40 4-4 CdS奈米粒子之觀察 50 4-4-1 穿透式電子顯微鏡(TEM)觀察 50 4-4-2 高解析穿透式電子顯微鏡(HRTEM)觀察 51 4-4-3 能量分散光譜儀(Energy Dispersive X-ray Analysis, EDX)分析 52 4-4-4 綜合討論 52 第5章 第五章:結論 57 第6章 第六章:未來展望 59 6-1 CdS奈米粒子性質之探討 59 6-1-1 CdS奈米粒子之分離 59 6-1-2 CdS奈米粒子表面鍵結蛋白之分析 59 6-1-3 CdS奈米粒子光學性質探討 60 6-2 CdS奈米粒子應用性評估 61 第7章 參考文獻 63

    1. 廖建勛, 奈米材料的發展動態. 化工資訊, 1998: p. 20.
    2. Sze, S.M., 半導體元件物理與製作技術. 2000: 高立圖書.
    3. Holonyak, N.J. and S.F. Bevacqua, Coherent (Visible) Light Emission from Ga(As1-xPx) Junctions. Appl. Phys. Lett., 1962. 1: p. 82-83.
    4. Craford, M.G., Leds Challenge the Incandescents. Ieee Circuits and Devices Magazine, 1992. 8(5): p. 24-29.
    5. Savage, N., LEDs light the future. Technology Review, 2000. 103(5): p. 38-+.
    6. 陳澤澎, 發光二極體的發展及新應用. 工業材料, 1997. 123: p. 74.
    7. Haase, M.A., et al., Blue-Green Laser-Diodes. Applied Physics Letters, 1991. 59(11): p. 1272-1274.
    8. Ishibashi, A., II-VI blue-green light emitters. Journal of Crystal Growth, 1996. 159(1-4): p. 555-565.
    9. Singh, N. and D.R. Vij, Luminescence and Related Properties of Magnesium Sulfide Phosphors. Journal of Materials Science, 1994. 29(19): p. 4941-4945.
    10. 牟中原、陳家俊, 奈米材料研究發展. 科學發展月刊, 1990. 28(4): p. 281.
    11. 蘇品書, 超微粒子材料技術. 1989: 復漢出版社.
    12. Hayashi, C., Ultrafine Particles. Physics Today, 1987. 40(12): p. 44-51.
    13. 莊萬發, 超微粒子理論應用. 1995: 復漢出版社.
    14. Wozniak, M.E., A. Sen, and A.L. Rheingold, Molecular-Level Ceramic Polymer Composites .3. Synthesis of Polymer-Trapped Cadmium and Copper Sulfides Starting from the Elements and the Structure of the Intermediate, Soluble, Cadmium-Sulfide Precursor. Chemistry of Materials, 1992. 4(4): p. 753-755.
    15. Wang, Y. and N. Herron, Optical-Properties of Cds and Pbs Clusters Encapsulated in Zeolites. Journal of Physical Chemistry, 1987. 91(2): p. 257-260.
    16. Petit, C., P. Lixon, and M.P. Pileni, Synthesis of Cadmium-Sulfide Insitu in Reverse Micelles .2. Influence of the Interface on the Growth of the Particles. Journal of Physical Chemistry, 1990. 94(4): p. 1598-1603.
    17. Herron, N., Y. Wang, and H. Eckert, Synthesis and Characterization of Surface-Capped, Size-Quantized Cds Clusters - Chemical Control of Cluster Size. Journal of the American Chemical Society, 1990. 112(4): p. 1322-1326.
    18. Vossmeyer, T., et al., Cds Nanoclusters - Synthesis, Characterization, Size-Dependent Oscillator Strength, Temperature Shift of the Excitonic-Transition Energy, and Reversible Absorbency Shift. Journal of Physical Chemistry, 1994. 98(31): p. 7665-7673.
    19. Ayyappan, S., et al., Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. Journal of Materials Research, 1997. 12(2): p. 398-401.
    20. Kobo, R.J., Phys. Soc. Jpn., 1962. 17(5): p. 975.
    21. 劉祥麟, 台灣奈米科技研究體系之簡介. 物理雙月刊, 2001. 23(6): p. 599.
    22. Macintyre, J.E., Dictionary of Inorganic Compounds-Chemical Database. 1 ed, ed. F.M. Daniel and V.M. Stirling. 1992: Charpman and Hall.
    23. Goldstein, A.N., C.M. Echer, and A.P. Alivisatos, Melting in Semiconductor Nanocrystals. Science, 1992. 256(5062): p. 1425-1427.
    24. Jain, K.P., Physics of Semiconducting Nanostructures. 1997: Narosa Publication.
    25. Yoffe, A.D., Low-Dimensional Systems - Quantum-Size Effects and Electronic-Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-2-Dimensional Systems. Advances in Physics, 1993. 42(2): p. 173-266.
    26. Kampmann, A. and D. Lincot, Photoelectrochemical study of thin film semiconductor heterostructures: Junction formation processes in CdS vertical bar CdTe solar cells. Journal of Electroanalytical Chemistry, 1996. 418(1-2): p. 73-81.
    27. Wang, G.Z., et al., Preparation and characterization of CdS nanoparticles by ultrasonic irradiation. Inorganic Chemistry Communications, 2001. 4(4): p. 208-210.
    28. 吳添壽、黃國恩、羅致遵, 用溶液噴霧法製成之硫化鎘薄膜及其光導電特性的研究. 材料科學, 1972. 4(2): p. 77.
    29. Kryukov, A.I., et al., New Photocatalysts - Dispersed Semiconductor-Materials with Microheterojunctions. Teoreticheskaya I Eksperimentalnaya Khimiya, 1993. 29(3): p. 270-274.
    30. 平貴臣、曹立新、王麗潁、崔海寧、席時權, CdS半導體奈米微粒的複合與組裝. 化學通報, 2000. 63(3): p. 32.
    31. Colvin, V.L., M.C. Schlamp, and A.P. Alivisatos, Light-Emitting-Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature, 1994. 370(6488): p. 354-357.
    32. Kumar, N.D., et al., Organic-inorganic heterojunction light emitting diodes based on poly(p-phenylene vinylene)/cadmium sulfide thin films. Applied Physics Letters, 1997. 71(10): p. 1388-1390.
    33. Smyntyna, V., et al., Influence of Chemical-Composition on Sensitivity and Signal Reproducibility of Cds Sensors of Oxygen. Sensors and Actuators B-Chemical, 1995. 25(1-3): p. 628-630.
    34. Ross, J.N., Thick-Film Photosensors. Measurement Science & Technology, 1995. 6(4): p. 405-409.
    35. Brus, L.E., Electron Electron and Electron-Hole Interactions in Small Semiconductor Crystallites - the Size Dependence of the Lowest Excited Electronic State. Journal of Chemical Physics, 1984. 80(9): p. 4403-4409.
    36. Wada, Y., et al., Microwave-assisted size control of CdS nanocrystallites. Journal of Materials Chemistry, 2001. 11(7): p. 1936-1940.
    37. Zhu, J.J., et al., Preparation of CdS and ZnS nanoparticles using microwave irradiation. Materials Letters, 2001. 47(1-2): p. 25-29.
    38. Liao, X.H., J.J. Zhu, and H.Y. Chen, Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2001. 85(1): p. 85-89.
    39. 趙文元、王亦軍, 功能高分子材料化學. 1996: 中國工業出版社.
    40. Lins, U., et al., Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria. An Acad Bras Cienc, 2006. 78(3): p. 463-74.
    41. Flenniken, M., M. Allen, and T. Douglas, Microbe manufacturers of semiconductors. Chem Biol, 2004. 11(11): p. 1478-80.
    42. Pradhan, N. and S. Efrima, Single-precursor, one-pot versatile synthesis under near ambient conditions of tunable, single and dual band fluorescing metal sulfide nanoparticles. Journal of the American Chemical Society, 2003. 125(8): p. 2050-2051.
    43. Sweeney, R.Y., et al., Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol, 2004. 11(11): p. 1553-9.
    44. Dameron, C.T., B.R. Smith, and D.R. Winge, Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. J Biol Chem, 1989. 264(29): p. 17355-60.
    45. Bae, W. and R.K. Mehra, Properties of glutathione- and phytochelatin-capped CdS bionanocrystallites. Journal of Inorganic Biochemistry, 1998. 69(1-2): p. 33-43.
    46. Anderson, M.E., Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact, 1998. 111-112: p. 1-14.
    47. Klaus, T., et al., Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A, 1999. 96(24): p. 13611-4.
    48. Mukherjee, P., et al., Bioreduction of AuCl(4)(-) Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance. Angew Chem Int Ed Engl, 2001. 40(19): p. 3585-3588.
    49. Mukherjee, P., et al., Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem, 2002. 3(5): p. 461-3.
    50. Holmes, J.D., et al., Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol, 1995. 163(2): p. 143-7.
    51. Summers, D., Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol Microbiol, 1998. 29(5): p. 1137-45.
    52. Baneyx, F., Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol, 1999. 10(5): p. 411-21.
    53. Meister, A. and M.E. Anderson, Glutathione. Annu Rev Biochem, 1983. 52: p. 711-60.
    54. Douglas, K.T., Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol, 1987. 59: p. 103-67.
    55. Penninckx, M.J. and M.T. Elskens, Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol, 1993. 34: p. 239-301.
    56. Grant, C.M., F.H. MacIver, and I.W. Dawes, Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet, 1996. 29(6): p. 511-5.
    57. Murata, K. and A. Kimura, Cloning of a gene responsible for the biosynthesis of glutathione in Escherichia coli B. Appl Environ Microbiol, 1982. 44(6): p. 1444-8.
    58. Murata, K., et al., Excretion of glutathione by methylglyoxal-resistant Escherichia coli. J Gen Microbiol, 1980. 120(2): p. 545-7.
    59. Li, Y., et al., [Biosynthesis of glutathione: construction of ATP regeneration system between recombinant E. coli and S. cerevisiae]. Wei Sheng Wu Xue Bao, 2001. 41(2): p. 191-7.
    60. Li, Y., et al., The effect of environmental conditions and glucose feeding in shaking flask on glutathione (GSH) production. Chin J Biotechnol, 1998. 14(2): p. 85-91.
    61. Fan, X., et al., Increasing glutathione formation by functional expression of the gamma-glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotechnol Lett, 2004. 26(5): p. 415-7.
    62. Sofia, C.C. and I.G.L. Ana, The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar under Cd exposure. Enzyme and Microbial Technology, 2005.
    63. Li, Y., et al., Using Lactococcus lactis for glutathione overproduction. Applied Microbiology and Biotechnology, 2005. 67(1): p. 83-90.
    64. Williams, P., E. KeshavarzMoore, and P. Dunnill, Efficient production of microbially synthesized cadmium sulfide quantum semiconductor crystallites. Enzyme and Microbial Technology, 1996. 19(3): p. 208-213.
    65. Zenk, M.H., Heavy metal detoxification in higher plants--a review. Gene, 1996. 179(1): p. 21-30.
    66. Zhu, Y.L., et al., Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol, 1999. 121(4): p. 1169-78.
    67. Hatcher, E.L., Y. Chen, and Y.J. Kang, Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic activities. Free Radic Biol Med, 1995. 19(6): p. 805-12.
    68. Kowshik, M., et al., Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 2002. 78(5): p. 583-588.
    69. Liao, X.Y., et al., Improved glutathione production by gene expression in Escherichia coli. Lett Appl Microbiol, 2006. 43(2): p. 211-4.
    70. Rong, M.Z., et al., Surface derivatization of nano-CdS clusters and its effect on the performance of US quantum dots in solvents and polymeric matrices. Applied Surface Science, 2004. 228(1-4): p. 176-190.
    71. Ahmad, A., et al., Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc, 2002. 124(41): p. 12108-9.
    72. Cunningham, D.P. and L.L. Lundie, Jr., Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol, 1993. 59(1): p. 7-14.
    73. Green, M., et al., Nucleotide passivated cadmium sulfide quantum dots. Chemical Communications, 2005(38): p. 4830-4832.
    74. Meziani, M.J., et al., Direct conjugation of semiconductor nanoparticles with proteins. Langmuir, 2005. 21(5): p. 2008-2011.
    75. Seemann, M., et al., Isoprenoid biosynthesis through the methylerythritol phosphate pathway: The (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. Angewandte Chemie-International Edition, 2002. 41(22): p. 4337-4339.
    76. Cantor, C.R.a.S., P.R., Biophysical Chemistry Part Two. 1980: W.H. Freeman and Company. 443.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE