簡易檢索 / 詳目顯示

研究生: 王韋盛
Wang, Wei-Sheng
論文名稱: 應用於生醫訊號之1.6μW連續漸進式類比至數位轉換器
A 1.6μW Successive Approximation analog-to-digital Converter for Bio-medical Signal Application
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員: 洪浩喬
Hong, Hao-Chiao
陳新
Chen, Hsin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 連續漸進式類比至數位轉換器接觸分裂式數位至類比轉換器低功耗
外文關鍵詞: Successive Approximation analog-to-digital Converter, Junction Splitting digital-to-analog Converter, low power
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個創新的低功率消耗混合式數位至類比轉換器:半二元權重式與半接觸分裂式數位至類比轉換器,適用於10位元的生醫訊號擷取的連續漸進式類比至數位轉換器,並將操作電壓設計在0.9V,類比電路操作在次臨界區,以追求更低的功率消耗。
    為了減少不同段落的數位至類比轉換器間存在的不同的增益誤差所造成的電壓偏差,本論文也在不同的數位至類比轉換器上加上假的比較器以抵銷不同增益誤差所造成的偏差電壓。
    比較器的kick-back noise在此架構也產生比其他架構更大的影響,因此本論文也將傳統的rail-to-rail比較器進行修改以降低kick-back noise對前面數位至類比轉換器的影響。
    在pre-simulation可得到1.27μW的功率消耗,訊號對雜訊與總諧波比為61.7dB,換算為有效位元數為9.96-bit,價值指標為12.8 fJ/conversion step。
    晶片的設計實現採用了tsmc 0.18μm 1P6M CMOS製程,晶片佈局面積為893�e893μm2,扣掉pad的核心電路面積為440�e430μm2。在post-layout模擬結果可以得到1.72μW的功率消耗,訊號對雜訊與總諧波比為59.1dB,換算為有效位元數為9.53-bit,價值指標為23.2 fJ/conversion step。
    在0.9V的供應電壓,取樣頻率為100KS/s下進行量測實驗,可以得到1.59μW的功率消耗,訊號對雜訊與總諧波比為46.47dB,換算為有效位元數為7.43-bit,價值指標為92.2 fJ/conversion step。晶片最低可在0.6V的供應電壓下操作,消耗功率僅為0.783μW。
    量測結果雖在訊號對雜訊與總諧波比項目較不理想,本論文也在第六章結論部分進行討論與分析,並提出相對應的改善方法。


    This thesis proposes a novel 0.9V 10-bit Successive Approximation (SAR) analog-to-digital converter (ADC) based on half junction splitting (J.S.) and half binary weighted capacitor digital-to-analog converter (DAC) architecture. The kick-back noise of this structure due to comparator is larger than other DAC structures, thus a modified rail-to-rail comparator is used to reduce kick-back noise. This ADC is implemented in sub-threshold to reduce power consumption. In addition, dummy comparators are used in different sections of DAC to reduce the offset voltage caused by different gain errors of different DAC sections. The pre-simulation shows that the power dissipation is 1.27μW, SNDR is 61.7dB, ENOB is 9.96-bit, and figure-of-merit (FOM) is 12.8 fJ/conversion step.
    The chip has been fabricated with TMSC 0.18μm 1P6M CMOS process. The chip area is 893�e893μm2 with pads, and the core area is 440�e430μm2. The post-layout simulation shows that the power consumption is 1.72μW, the SNDR is 59.1dB, ENOB is 9.53-bit, and FOM is 23.2 fJ/conversion step.
    Under 0.9V supply voltage and 100KS/s sampling rate, the measurement result shows that the power dissipation was 1.59μW, SNDR was 46.47dB, ENOB was 7.43-bit, and FOM was 92.2 fJ/conversion step. This chip worked under 0.6 V supply voltage and consumed only 0.783μW. This low-power ADC is suitable for bio-medical signal acquisition.
    This low-power ADC is suitable for bio-medical signal acquisition.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 2 1.3論文架構與組織章節 4 第二章 類比至數位轉換器原理介紹 5 2.1各種類比至數位轉換器 5 2.1.1各種類比至數位轉換器之比較 5 2.1.2各種類比至數位轉換器介紹 6 2.1.3快閃式ADC簡介 7 2.1.4管線式ADC簡介 8 2.1.5積分式ADC簡介 9 2.1.6連續漸進式ADC簡介 11 2.1.7超取樣式ADC簡介 12 2.2類比至數位轉換器參數介紹 13 2.2.1引言 13 2.2.2解析度(Resolution) 14 2.2.3取樣頻率(Sampling Rate) 14 2.2.4最小定義位元(Least Significant Bit,LSB) 14 2.2.5差分非線性度(Differential Nonlinearity,DNL) 14 2.2.6積分非線性度(Integral Nonlinearity,INL) 15 2.2.7遺失碼(Missing Code) 16 2.2.8偏移誤差(Offset Error) 17 2.2.9增益誤差(Gain Error) 18 2.2.10總諧波失真(Total Harmonic Distortion,THD) 20 2.2.11訊號對雜訊比(Signal-to-Noise Ratio,SNR) 20 2.2.12訊號對雜訊與總諧波比(Signal-to-Noise and Total Harmonic Distortion Ratio,SNDR) 21 2.2.13有效位元數(Effective number of bits,ENOB) 21 2.2.14 Spurious Free Dynamic Range (SFDR) 21 2.2.15動態範圍(Dynamic Range,DR) 21 2.2.16價值指標(Figure of merit,FOM) 22 第三章 連續漸進式類比至數位轉換器設計考量 23 3.1低電壓設計考量 23 3.2取樣與保持電路(Sample and Hold, S/H) 23 3.2.1取樣與保持電路設計考量 23 3.2.2控制電壓饋蝕(Clock feedthrough) 25 3.2.3殘餘電荷注入(Charge injection) 25 3.2.4 熱雜訊(Thermal noise) 27 3.3比較器(Comparator)設計考量 27 3.4數位至類比轉換器(Digital-to-analog converter, DAC)設計考量 29 3.4.1 傳統二元權重式電容陣列數位至類比轉換器(Binary weighted capacitor array DAC) 29 3.4.2 接觸分裂式電容數位至類比轉換器(Junction splitting capacitor DAC) 30 3.4.3 傳統二元權重式數位至類比轉換器與接觸分裂式電容數位至類比轉換器功率消耗分析 31 3.4.4 接觸分裂式電容數位至類比轉換器架構分析 35 3.4.5 創新之混合式數位至類比轉換器 38 3.5數位邏輯控制器(Logic Controller)設計考量 41 第四章 連續漸進式類比至數位轉換器設計實現 44 4.1取樣與保持電路模擬結果 44 4.2比較器模擬結果 46 4.3數位至類比轉換器模擬結果 49 4.4連續漸進式類比至數位轉換器模擬結果 52 4.4.1 佈局前模擬(Pre-layout simulation) 52 4.4.2 佈局後模擬(Post-layout simulation) 55 第五章 連續漸進式類比至數位轉換器量測結果 60 5.1量測環境規劃 60 5.2晶片量測結果 63 5.2.1 供應電壓為0.9V之靜態參數 63 5.2.2 供應電壓為0.9V之動態參數 63 5.2.3 供應電壓為0.7V之量測結果 66 5.2.4 供應電壓為0.6V之量測結果 68 第六章 結論與未來展望 71 參考文獻 75

    [1] J. Sauerbrey, et al., " A 0.5-V 1-μW Successive Approximation ADC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 38, pp. 1261-1265, July 2003.
    [2] S.-Y. Lee, et al., "A 1-V 8-Bit 0.95μW Successive Approximation ADCfor Biosignal Acquisition Systems," presented at the IEEE International Symposium on Circuits and Systems, ISCAS, 2009.
    [3] K. Tanaka, et al., " A 0.026mm2 Capacitance-to-Digital Converter for Biotelemetry Applications Using a Charge Redistribution Technique," presented at the IEEE Asian Solid-State Circuits Conference, ASSCC, 2009.
    [4] H.-C. Hong and G.-M. Lee, " A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 42, pp. 2161-2168, OCTOBER 2007.
    [5] N. Verma and A. P. Chandrakasan, " An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 42, pp. 1196-1205, 2007.
    [6] S.-K. Lee, et al., "A 1.3μW 0.6V 8.7-ENOB Successive Approximation ADC in a 0.18μm CMOS," presented at the Symposium on VLSI Circuits, 2009.
    [7] Y.-K. Chang, et al., " A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications," presented at the IEEE Asian Solid-State Circuits Conference, ASSCC, 2007.
    [8] A. Rodríguez-Pérez, et al., "A Low-Voltage Low-Power Successive Approximation Reconfigurable ADC based on SC Techniques," presented at the Research in Microelectronics and Electronics, PRIME, 2009.
    [9] W.-Y. Pang, et al., "A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications," presented at the IEEE Asian Solid-State Circuits Conference, ASSCC, 2009.
    [10] C. FAYOMI, et al., "An Experimental 0.6-V 57.5-fJ/Conversion-Step 250-kS/s 8-bit Rail-to-Rail Successive Approximation ADC in 0.18μm CMOS," presented at the IEEE International Conference on Electronics, Circuits, and Systems, ICECS, 2009.
    [11] A. Agnes, et al., "A 9.4-ENOB 1V 3.8pW lOOkS/s SAR ADC with Time-Domain Comparator," presented at the IEEE International Solid-State Circuits Conference, ISSCC, 2008.
    [12] Y. Lee and I.-C. Park, "Capacitor Array Structure and Switching Control Scheme to Reduce Capacitor Mismatch Effects for SAR Analog-to-Digital Converters," presented at the IEEE International Symposium on Circuits and Systems, ISCAS, 2009.
    [13] D. Zhang, et al., "A 53-nW 9.12-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS forMedical Implant Devices," presented at the ESSCIRC, 2011.
    [14] C.-C. Liu, et al., "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 45, pp. 731-740, APRIL 2010.
    [15] B. P. Ginsburg and A. P. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 42, pp. 739-747, APRIL 2007.
    [16] Y.-Z. Lin, et al., "An Asynchronous Binary-Search ADC Architecture With a Reduced Comparator Count," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 57, pp. 1829-1837, 2010.
    [17] C. L. Portmann and T. H. Y. Meng, "Power-Efficient metastability Error Reduction in CMOS Flash A/D Converters," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 31, pp. 1132-1140, AUGUST 1996.
    [18] A. Deli´c-Ibuki´c and D. M. Hummels, "Continuous Digital Calibration of Pipeline A/D Converters," IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 55, pp. 1175-1185, AUGUST 2006.
    [19] N. M. Mohan, et al., "A Novel Dual-Slope Resistance-to-Digital Converter," IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 59, pp. 1013-1018, MAY 2010.
    [20] R. Abbiati, et al., "A Programmable A/D Sigma-Delta Converter for Pulse Digital Processing Setups," IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 51, pp. 1270-1276, JUNE 2004.
    [21] A. Mertens and D. Eckardt, "Voltage and Current Sensing in Power Electronic Converters Using Sigma–Delta A/D Conversion," IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 34, pp. 1039-1046, SEPTEMBER/OCTOBER 1998.
    [22] A. Baschirotto and R. Castello, "A 1-V 1.8-MHz CMOS Switched-Opamp SC Filter with Rail-to-Rail Output Swing," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 32, pp. 1979-1986, DECEMBER 1997.
    [23] R. J. Baker, CMOS circuit design, layout, and simulation: IEEE Wiley interscience, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE