簡易檢索 / 詳目顯示

研究生: 鄭慕純
Mu-Chun Cheng
論文名稱: 綠豆VrDHN基因在缺水逆境下之表現
Expression of mungbean VrDHN mRNA under water stress
指導教授: 林彩雲
Tsai-Yun Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 30
中文關鍵詞: VrDhn基因LEA蛋白
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 農業作物產量常因受到缺水、高鹽、高溫影響而降低,植物對抗環境逆境的細胞及分子研究已有廣泛的研究。LEA蛋白在種子成熟後期大量表現,通常在缺水情形下表現量會增加。從綠豆幼苗所分離的VrDHN基因為Y2K類型dehydrin,屬於第二型的LEA蛋白。本論文藉由繪製壓力-體積曲線可得到綠豆的水勢參數。膨壓是植物體中水分狀態的重要訊息。VrDHN基因的表現量在不同的處理下會隨著膨壓的減少而有明顯的改變。實驗結果顯示當膨壓在0.1 MPa時VrDHN基因的表現量會遽增。


    Crop production is often reduced by drought, high salinity, and nonoptimal temperatures. The cellular and molecular responses of plants to environmental stress have been studied intensively. The genes encoding late embryogenesis abundant (LEA) proteins are consistently represented in differential screens for transcripts with increased levels during drought. The Vigna radiata VrDHN gene which is a Y2K-type dehydrin belongs to the Group 2 LEA proteins. In the study, pressure-volume curve of mungbean leaf was plotted to obtain parameters of water status. Turgor pressure is an important factor that signals the water status of plant cells. The VrDHN mRAN expression is significantly affected by turgor loss. Our results showed that turgor potential of 0.10 MPa is the threshold for the remarkably increase of VrDHN transcripts under water stress.

    Abstract (in Chinese)……………………………………i Abstract (in English)……………………………………ii Acknowledgement……………………………………………iii Table of Contents…………………………………………iv List of Tables ……………………………………………v List of Figures……………………………………………vi Abbreviations………………………………………………vii Introduction…………………………………………………1 Materials and Methods ……………………………………5 Plant materials ……………………………………………5 Pressure-volume curve ……………………………………5 Stress treatments …………………………………………6 Total cellular RNA extraction …………………………7 Reverse transcription ……………………………………8 cDNA Library Screening……………………………………8 Realtive Quantification Real-Time PCR ………………11 Results ………………………………………………………13 Discussion …………………………………………………16 References …………………………………………………19 Tables ………………………………………………………22 Figures ………………………………………………………25

    References

    Ambard-Bretteville, F., Sorin, C., Rebeille, F., Hourton-Cabassa, C., Colas des Francs-Small, C. (2003). Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress. Plant Mol. Biol. 52, 1153-1168.

    Balsamo, R.A., Vander Willigen, C., Boyko,W., Farrant, J. (2006). Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Annals of Botany 97, 985-991.

    Bartels, D., Nelson, D. (1994). Approaches to improve stress tolerance using molecular-genetics. Plant Cell Env. 17, 659-667.

    Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell 7, 1099-1111.

    Borovskii, G., Stupnikova, I., Antipina, A., Vladimirova, S., Voinikov, V. (2002). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Bio. 2, 5-12.

    Boyer, J.S. (2001). Growth-induced water potentials originate from wall yielding during growth. J. Exp. Botany 52, 1483-1488.

    Bray, E.A. (1993). Molecular responses to water deficit. Plant Physiol. 103, 1035-1040.

    Chang, S., Puryear, J., Chirney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol.Biol. 11, 693-699.

    Chen, Y.J., Wu, M.f., Yu, Y.h., Tam, M.F., Lin, T.Y. (2004). Developmental expression of three mungbean Hsc70s and substrate-binding specificity of the encoded proteins. Plant Cell Physiol. 45, 1603-1614.

    Close, T.J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plantarum 97, 795-803.

    Close, T.J. (1997). Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plantarum 100, 291-296.

    Close, T.J., Kortt, A.A., Chandler, P.M. (1989). A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 13, 95-108.

    Costantini, V., Bellincontro, A., DeSantis, D., Botondi, R., Mencarelli, F. (2006). Metabolic changes of Malvasia grapes for wine production during postharvest drying. J. Agric. Food Chem. 54, 3334-3340.

    Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., Sarhan, F. (1998). Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10, 623-638.

    Dejardin, A., Sokolov, L.N., Kleczkowski, L.A. (1999). Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344, 503-509.

    Ding, J.P., Pickard, B.G. (1993). Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 3, 83-110.

    Galau, G.A., Close, T.J. (1992). Sequences of the cotton group 2 Lea/Rab dehydrin proteins encoded by Lea3 Cdnas. Plant Physiol. 98, 1523-1525.

    Gao, X.P., Pan, Q.H., Li, M.J., Zhang, L.Y., Wang, X.F., Shen, Y.Y., Lu, Y.F., Chen, S.W., Liang, Z., Zhang, D.P. (2004). Abscisic acid is involved in the water stress-induced betaine accumulation in pear leaves. Plant Cell Physiol. 45, 742-750.

    Girma, F.S., Krieg, D.R. (1992). Osmotic adjustment in sorghum: I. Mechanisms of diurnal osmotic potential changes. Plant Physiol. 99, 577-582.

    Ismail, A.M., Hall, A.E., Close, T.J. (1999a). Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. USA 96, 13566-13570.

    Ismail, A.M., Hall, A.E., Close, T.J. (1999b). Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 120, 237-244.

    Iuchi, S., Yamaguchi-Shinozaki, K., Urao, T., Terao, T., Shinozaki, K. (1996). Novel drought-inducible genes in the highly drought-tolerant cowpea: Cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol. 37, 1073-1082.

    Koag, M.C., Fenton, R.D., Wilkens, S., Close, T.J. (2003). The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131, 309-316.

    Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Arch Biochem. Biophy. 444, 139-158.

    Nylander, M., Svensson, J., Palva, E.T., Welin, B.V. (2001). Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45, 263-279.

    Sarhan, F., Ouellet, F., VazquezTello, A. (1997). The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plantarum 101, 439-445.

    Tang, A.C., Boyer, J.S. (2002). Growth-induced water potentials and the growth of maize leaves. J. Exp. Botany 53, 489-503.

    Thomashow, M.F. (1999). Plant cold acclimation freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol.Biol. 50, 571-599.

    Tyree, M.T., Hammel, H.T. (1972). The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exp. Botany 23, 267-282.

    Valliyodan, B., Nguyen, H.T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. in Plant Biol. 9, 189-195.

    Wise, M.J. (2003). LEAping to conclusions: A computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4.
    Xiong, L., Schumaker, K.S., Zhu, J.K. (2002). Cell Signaling during Cold, Drought, and Salt Stress. The Plant Cell 14, S165-S183.

    Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Sci. 6, 66-71.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE