研究生: |
潘羿娟 Pan, Yih-Jiuan |
---|---|
論文名稱: |
The transmembrane domain 6 of vacuolar H+-pyrophosphatase mediates protein targeting and proton transport 液泡焦磷酸水解酶第六穿膜區參與蛋白質定位與質子傳送 |
指導教授: |
潘榮隆
Pan, Rong-Long |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | Vacuolar H + -pyrophosphatase 、Site-directed mutagenesis 、Proton translocation 、Tonoplast 、Vacuole 、protein targeting |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Vacuolar H+-pyrophosphatase (H+-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PPi hydrolysis. The topology of H+-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of H+-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean H+-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PPi hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PPi hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H+-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.
[1] F.B. Salisbury and C.W. Ross, Plant Physiology, 4th edition, Wadsworth Inc., California, USA, 1992, pp.24-25.
[2] M. Maeshima, Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 469-497.
[3] A. Serrano, J.R. Perez-Castineira, H. Baltscheffsky and M. Baltscheffsky, Proton-pumping inorganic pyrophosphatases in some archaea and other extremophilic prokaryotes, J. Bioenerg. Biomembr. 36 (2004) 127–133.
[4] Y.M. Drozdowicz and P.A. Rea, Vacuolar H+-pyrophosphatases: from the evolutionary backwaters into the mainstream, Trends Plant Sci. 6 (2001) 206-211.
[5] M. Maeshima, Vacuolar H+-pyrophosphatase, Biochim. Biophys. Acta 1465 (2000) 37-51.
[6] J.J. Wu, J.T. Ma and R.L. Pan, Functional size analysis of pyrophosphatase from Rhodospirillum rubrum determined by radiation inactivation, FEBS Lett. 283 (1991) 57-60.
[7] S.J. Yang, S.S. Jiang, R.C. Van, Y.Y. Hsiao and R.L. Pan, A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5'-isothiocyanate, Biochim. Biophys. Acta 1460 (2000) 375-383.
[8] M. Hirono, Y. Nakanishi and M. Maeshima, Identification of amino acid residues participating in the energy coupling and proton transport of Streptomyces coelicolor A3(2) H+-pyrophosphatase, Biochim. Biophys. Acta 1767 (2007) 1401-1411.
[9] H. Mimura, Y. Nakanishi, M. Hirono and M. Maeshima, Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis, J. Biol. Chem. 279 (2004) 35106-35112.
[10] Y.M. Drozdowicz, J.C. Kissinger and P.A. Rea, AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis, Plant Physiol. 123 (2000) 353-362.
[11] G.A. Belogurov, M.V. Turkina, A. Penttinen, S. Huopalahti, A.A. Baykov and R. Lahti, H+-pyrophosphatase of Rhodospirillum rubrum. High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation by mersalyl, J. Biol. Chem. 277 (2002) 22209-22214.
[12] Y.M. Drozdowicz, Y.P. Lu, V. Patel, S. Fitz-Gibbon, J.H. Miller and P.A. Rea, A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implication for the origins of pyrophosphate-energized pumps, FEBS Lett. 460 (1999) 505-512.
[13] R.G. Zhen, E.J. Kim and P.A. Rea, Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide, J. Biol. Chem. 272 (1997) 22340-22348.
[14] Y. Nakanishi, T. Saijo, Y. Wada and M. Maeshima, Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase, J. Biol. Chem. 276 (2001) 7654-7660.
[15] M.G. Claros and G.V. Heijne, TopPred Ⅱ: an improved software for membrane protein structure predictions, CABIOS. 10 (1994) 685-686.
[16] R.C. Van, Y.J. Pan, S.H. Hsu, Y.T. Huang, Y.Y. Hsiao and R.L. Pan, Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase, Biochim. Biophys. Acta 1709 (2005) 84-94.
[17] S.H. Hung, S.J. Chiu, L.Y. Lin and R.L. Pan, Vacuolar H+-pyrophosphatase cDNA (Accession No. U31467) (PGR 95-082) from etiolated mung bean seedlings, Plant Physiol. 109 (1995) 1-125.
[18] S.H. Hsu, Y.Y. Hsiao, P.F. Liu, S.M. Lin, Y.Y. Luo and R.L. Pan, Purification, characterization, and spectral analyses of histidine-tagged vacuolar H+-pyrophosphatase expressed in yeast, Bot. Stud. 50 (2009) 291-301.
[19] S. Barik, in: B.A. White (Ed.), PCR Cloning Protocols: From Molecular Cloning to Genetic Engineering, Humana Press Inc., New Jersey, USA, 1997, pp173-182.
[20] R.D. Kirsh and E. Joly, An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes, Nucleic Acids Res. 26 (1998) 1848-1850.
[21] E.J. Kim, R.G. Zhen and P.A. Rea, Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis, J. Biol. Chem. 270 (1995) 2630-2635.
[22] Y.Y. Hsiao, Y.J. Pan, S.H. Hsu, Y.T. Huang, T.H. Liu, C.H. Lee, C.H. Lee, P.F. Liu, W.C. Chang, Y.K. Wang, L.F. Chien and R.L. Pan, Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase, Biochim. Biophys. Acta 1767 (2007) 965-973.
[23] M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal Biochem. 72 (1976) 248–254.
[24] U.K. Laemmli, Cleavage of structure proteins during the assembly of the head of bacteriophage T4, Nature (London) 222 (1970) 680-685.
[25] Y.Y. Hsiao, R.C. Van, S.H. Hung, H.H. Lin and R.L. Pan, Roles of histidine residues in plant vacuolar H+-pyrophosphatase, Biochim. Biophys. Acta 1608 (2004) 190-199.
[26] M.C. Keogh, J.A. Kim, M. Downey, J. Fillingham, D. Chowdhury, J.C. Harrison, M. Onishi, N. Datta, S. Galicia, A. Emili, J. Lieberman, X. Shen, S. Buratowski, J.E. Haber, D. Durocher, J.F. Greenblatt and N.J. Krogan, A phosphatase complex that dephosphorylates □H2AX regulates DNA damage checkpoint recovery in S. cerevisiae, Nature 439 (2006) 497-501.
[27] E.J. Kim, R.G. Zhen and P.A. Rea, Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport, Proc. Natl. Acad. Sci. USA. 91 (1994) 6128-6132.
[28] H.H. Lin, Y.J. Pan, S.H. Hsu, R.C. Van, Y.Y. Hsiao, J.H. Chen and R.L. Pan, Deletion mutation analysis on C-terminal domain of plant vacuolar H+-pyrophosphatase, Arch. Biochem. Biophys. 442 (2005) 206-213.
[29] S.J. Yang, S.S. Jiang, Y.Y. Hsiao, R.C. Van, Y.J. Pan and R.L. Pan, Thermoinactivation analysis of vacuolar H+-pyrophosphatase, Biochim. Biophys. Acta 1656 (2004) 88-95.
[30] J.S. Bonifacino, L.M. Traub, Signals for sorting of transmembrane proteins to endosomes and lysosomes, Annu. Rev. Biochem. 72 (2003) 395-447.
[31] T. Pawson and P. Nash, Assembly of cell regulatory systems through protein interaction domains, Science 300 (2003) 445-452.
[32] L.A. Dunbar, P. Aronson and M.J. Caplan, A transmembrane segment determines the steady-state localization of an ion-transporting adenosine triphosphatase, J. Cell Biol. 148 (2000) 769-778.
[33] A. Kudru, R.T. Avalos, C.M. Sanderson and D.P. Nayak, Transmembrane domain of influenza virus neuraminidase, a type Ⅱ protein, possesses an apical sorting signal in polarized MDCK cells, J. Virol. 70 (1996) 6508-6515.
[34] S. Lin, H.Y. Naim, A.C. Rodriguez and M.G. Roth, Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells, J. Cell Biol. 142 (1998) 51-57.
[35] G.A. Belogurov and R. Lahti, A lysine substitute for K+ A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans, J. Biol. Chem. 277 (2002) 49651-49654.
[36] S. Subramaniam, The Biology Workbench-a seamless database and analysis environment for the biologist, Proteins. 32 (1998) 1-2.
[37] P. Rice, I. Longden and A. Bleasby, EMBOSS:The European molecular biology open software suite, Trend. Genet. 16 (2000) 276-277.