研究生: |
陳倫倫 Lun-Lun Chen |
---|---|
論文名稱: |
利用氮化的方式在矽太陽能電池上形成選擇性射極 The Formation of Selective Emitter by Nitridation for Si-Based Solar Cell |
指導教授: | 巫勇賢 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 太陽能電池 、選擇性射極 |
外文關鍵詞: | solar cell, selective emitter |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展出的一種形成選擇性射極太陽電池的新方式,此方式是先以相容於量產型太陽電池之製程形成超薄阻擋層再進行一次式的POCL3擴散。這層阻擋層可以降低磷在太陽電池射極上的□雜濃度,利用這種製程結合微影技術,將可以在金屬電極下形成n+-type的□雜區域並於在金屬電極間則形成n-type□雜區域,亦即所謂的選擇性射極。選擇性射極的結構在很多高效率矽太陽電池上都已經被廣泛地使用,此選擇性射極的好處是可讓太陽電池有較佳的短波長吸收、較低的漏電流以及相較於傳統式射極更高的光轉換效率。使用此製程形成選擇性射極其優點在於能有效地於一次POCL3擴散即形成選擇性射極;更重要的是,在不久的將來亦可應用此製程於雷射溝槽埋入式電極技術及雙面太陽電池等其他高效率太陽電池之結構,可大幅簡化其的製程流程。
References:
[1] 林明獻, “太陽電池技術入門,” 全華出版社,2007.
[2] S. Bowden, C. B. Honsberg, “Photovoltaics CDROM,” web publication.
[3] D. A. Neamen, “Semiconductor physics& devices,” 2nd edition, McGraw-Hill, 2003.
[4] S. R. Wenham, M. A. Green, M.E. Watt, R. Corkish, “Applied photovoltaics,” 2nd edition, Earthscan, 2007.
[5] S. O. Kasap, “Optoelectronics,” Prentice Hall, 1999.
[6] M. A. Green, “Solar cells,” Prentice Hall, 1982.
[7]A. Luque, S. Hegedus, “Handbook of photovoltaic science and Engineering,” John Wiley & Sons Ltd, 2002.
[8]G. Conibeer, “Third-generation photovoltaics,” Materialstoday, vol.10, no.1, pp.42-50, November 2007.
[9] P. Kittidachachan, T. Markvart, D. Bagnall, “Optimisation, design and fabrication of high efficiency p-n junction solar cell,” The University of Southampton, 2003
[10] J. Zhao, A. Wang, M. A. Green, “24.5% efficiency PERT silicon solar cells on SEHM CZ substrates and cell performance on other SEH CZ and FZ substrates,” Solar Energy Materials & Solar Cells, vol. 66, pp.27-36, 2001.
[11] M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 65, pp9-16, 2001
[12] M. M. Hilali, B. To, A. Rohatgi, “A review and understanding of screen-printed contacts and selective-emitter formation,” 14th Workshop on Crystalline Silicon Solar Cells and Modules, 2004
[13] J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, R. P. Mertens, “Advanced manufacturing concepts for crystalline silicon solar cells,” IEEE Trans. Electron Devices, vol. 46, no.10, 1999
[14] S. Wenham, “Buried-contact Si solar cells,” Progress in Photovoltaics: Research and Applications, vol. 1, pp. 3-10, 1993
[15] J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, R. P. Mertens, “Advanced cost-effective crystalline silicon solar cell technologies,” Solar Energy Materials & Solar Cells, 65, pp. 249-259, 2001
[16] A. Rohatgi, M. Hilali, D. L. Meier, A. Ebong, C. Honsberg, A. F. Carrol, P. Hacke, “Self-aligned self-doping selective for screen-printed solar cells,” 17th European Solar Energy Conference, 2001
[17] M. M. Hilali, A. Rohatgi, S. Asher, “Development of Screen-Printed silicon solar cells with high fill factors on 100 /sq Emitters,” IEEE Trans. Electron Devices, vol. 51, no. 6, 2004
[18] S. Sivoththaman, W. Laureys, P. De Schepper, J. Nijs, R. Mertens, “Selective emitters in Si by single step rapid thermal diffusion for photovoltaic devices,” IEEE Electron Device Lett, Vol. 21, no. 6, 2000
[19] J.M. Serra, R. Gamboa , A. M. Vall□ra, “A study on selective emitter formation through an oxide mask for silicon solar cells,” Proceedings of the 13th European Photovoltaic Solar Energy Conference, p. 1422, 1995
[20] D. S. Ruby, P. Yang, M. Roy, S. Narayanan, “Recent progress on the self-aligned, selective emitter silicon solar cell,” 26 PVSC, 1997
[21] J. Horzel, J. Szlufcik, J. Nijs, R. Mertens, “A simple processing sequence for selective emitters”, 26th IEEE Photovoltaic Specialists Conference, pp. 139-142, 1997
[22] L. Debarge, M. Schott, J. C. Muller, R. Monna, “Selective-emitter formation with a single screen-printed p-doped paste deposition using out-diffusion in an RTP-step,” Solar Energy Materials and Solar Cells, vol. 74, pp. 71-75, 2002
[23] J. Schmidt, M. Kerr, A. Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks,” Semiconductor science and technology, vol. 16, pp. 164-170, 2000
[24] Y. H. Wu, C. Y. Wang, I. Chang, C. K. Kao, C. M. Kuo, A. Ku, “A method to monitor the quality of ultra-thin nitride for trench DRAM with a buried strap structure,” Semiconductor Science And Technology, vol. 22, pp. 49-52, 2007
[25] M. J. Kerr, J. Schmidt, A. Cuevas, J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” Journal of Applied Physics, vol. 89, 2001
[26] D. S. Kim, M. M. Hilali, A. Rohatgi, K. Nakano, A. Hariharan, K. Matthei, “Development of a phosphorus spray diffusion system for low-cost silicon solar cells,” Journal of The Electrochemical Society, vol.153, pp. 1391-1396, 2006.
[27] Z. Chen, A. Rohatgi, R. O. Bell, J. P. Kalejs, “Defect passivation in multicrystalline-Si materials by plasma-enhanced chemical vapor deposition of SiO2/SiN coatings,” Appl. Phys. Lett, vol. 65, 1994
[28] C. T. Sah, “Reduction of solar cell efficiency across the back surface field junction,” Solid State Electronics, vol. 31, pp.451-457, 1984
[29] A. Hubner, A. G. Aberle, R. Hezel, “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency,” Appl. Phys. Lett, vol.70 pp. 1008-1010, 1997