研究生: |
楊崇佑 Chung-Yu Yang |
---|---|
論文名稱: |
噻吩的取代基效應與其衍生物的合成反應途徑之理論研究 A theoretical study about substituent effect of 3,4-dimethylenethiophene and reaction mechanism of its derivatives (sultine and sulfolene) |
指導教授: |
游靜惠
Chin-hui Yu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 噻吩 、雙自由基的取代基效應 、sultine 、sulfolene 、異構化反應機制 、密度泛涵理論 |
外文關鍵詞: | 3,4-dimethylenethiophene, substituent effect of diradical, sultine(thieno-oxathiin-3-oxide), sulfolene(thieno-thiophene-2,2-oxide), isomeric reaction mechanism, DFT |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前實驗上產生雙自由基分子o-xylene(4)有許多方式,光解sultine是其中一種方式。過去鍾文聖教授對具噻吩結構的sultine衍生物(14),做了一系列的合成與熱化學反應的研究;經發現sultine分子往往和親雙烯或親核基反應時,還會異構化到sulfolene分子(15);先對sultine與sulfolene間異構化過程做一徹底了解,相信對這類反應可有更深的認知。本論文係以密度泛涵理論對分子的性質與多重態位能面下可能發生的反應途徑作一研究探討。通篇在B3LYP/6-31G++**計算層級下,先計算噻吩(3,4-dimethylenethiophene, 8)的性質並討論其取代基效應,接續對sultine與sulfolene間異構化過程做一研究,分析可能出現的中間體、過渡態,描繪可能的反應流程。關於噻吩的性質可得到三重基態穩定之結果,其取代基效應大致可總結:拉電子效應越強者,越有可能發生多重態能量間的反轉。異構化方面,sultine分子被激發後,可能藉由跨系統電子轉移(ISC)到三重組態上,然後越過”一”單能障異構化到sulfolene的穩定三重態,最後能量再降回sulfolene基態,如此達到sultine與sulfolene間的異構化反應;在這”單”能障 (似由能量相近、結構差異不大的兩過渡態組成) 能彼此互換的前提下,本論文結果支持鍾教授所提出的機制。除三重態的反應途徑外,本論文亦發現反應發生在單重態位能面上的可能,其所需條件亦較三重態寬鬆(因為三重態的位能曲面較單重態及游離態高);還發現不同組態間,亦可能因能量曲面的相交,而造成多重組態間的互換,進而發生反應。本論文最後探討單sultine分子的內異構化過程。
Sultine is also regarded as the precursor for producing diradical molecule, o-xylene(4). Recently W.-S. Chung synthesize a series of sultine(14) which may be the derivative of 3,4-dimethylenethiophene(8), and then discuss the thermo-reaction related to them. According the result, the isomeric reaction between sultine and sulfolene(15) is discovered accompanied with thermo-reaction of sultine and Nucleophile. This thesis first focuses on the molecular properties and substituent effect of 3,4-dimethylenethiophene(8) by using of the Density Fuctinoal Theory(DFT) . Then the study for the process of isomeric reaction described above is followed. From the calculation(B3LYP/6-31++G**) results, we found that molecule 8 is a little more stable within its triplet than singlet configuration. About the substituent effect, the more powerful electron-withdrawing group is, the more possibility is to appear energy inversion among electronic configurations. As for the reaction, we can acquire three sketches involving interaction paths for photolysis reaction of 14 and 15, including triplet potential surface only(via intersystem crossing(ISC) to exchange different configurations, this path support the Prof. Chung’s idea), singlet potential surface only, and mixing different configuration potential surface. Finally it’ll be elucidated that the tautomerism of sultne(because of S=O position, see 14-axi and 14-equ).
1. Cadenas, E.; Davies, KJ. Free Radic Biol Med. 2000, 29, 222.
2. Freeman, BA.; Crapo, JD. Lab Invest. 1982, 47, 412.
3. Rosen, GM.; Pou, S.; Ramos, CL.; Cohen, MS.; Britigan, BE. FASEB J. 1995, 9, 200.
4. Smith, M. E. Phagocytosis of Myelin in Demyelinative Disease, 1999, 24, 261.
5. Knight, JA. Ann Clin Lab Sci. 2000, 30, 145.
6. Linsebigler,A. L.;Guangquan, L.; Yates, J. T. Chem. Rev. 1995, 95, 735.
7. Jeffrey, P.;Krzysztof, M. Chem. Mater 2001, 13, 3436.
8. Fridovich, I. Arch Biochem Biophys. 1986, 247, 1.
9. Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill: New York 1969.
10. Longuet-Higgins, H. C. J. Chem.Phys. 1950, 18, 265.
11. Clar, E.; Stewart, D. G. J. Am. Chem. Soc. 1953, 75, 2667.
12. Clar, E.; Kemp, W.; Stewart, D. G. Tetrahedron 1958, 3, 325.
13. Clar, E. Aromatische Kohlenwasserstoffe; Springer-Verlag: Berlin 1952.
14. Albright, T. A.; Burdett, J. K.; Whangbo, M. -H. Orbital Interactions in Chemistry; Wiley-interscience: New York 1985.
15. Whangbo, M. –H. In Extended Linear Chain Compounds; Miller: New York 1982.
16. Salaneck, W. R., Lundstrom, I., Ranby, B. Conjugated Polymers and Related Materials; Oxford: New York 1993.
17. Nakazaki, J.; Chung, In.; Matsushita, M. M.; Sugawara, T.; Watanabe, R.; Izuoka, A.; Kawada Y. J. Mater. Chem. 2003, 13, 1011.
18. Cramer, C. J. J. Chem. Soc. Perkin Trans. 2 1998, 1007.
19. Dowd, P. J. Am. Chem. Soc. 1966, 88, 2587.
20. Dowd, P. J. Am. Chem. Soc. 1970, 92, 1066.
21. Dowd, P. Acc. Chem. Res. 1972, 5, 242.
22. Cramer, C. J.; Smith, B. A. J. Phys. Chem. 1996, 100, 9664.
23. Allinson, G.;Bushby, J.; Jesudason, M. V.; Paillaud, J.-L.; Taylor N. J. Chem. Soc. Perkin Trans. 2, 1997, 147.
24. Iwamura H. J. Phys Org. Chem. 1998, 11, 299.
25. Iwamura H.; Koga, N. Acc. Chem. Res. 1993, 26, 259.
26. Rajca, A. Chem. Rev. 1994, 94, 871.
27. Fang, S.; Lee., M.-S.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1995, 117, 6727.
28. West, A. P., Jr.; Silverman, S. K.; Dougherty, D. A. J. Am. Chem. Soc. 1996, 118, 1452.
29. Kearly, M. L.; Ichimura, A. S.; Lathi, P. M. J. Am. Chem. Soc. 1995, 118, 5235.
30. Yoshizawa, K.; Hoffman, R. Chem. Eur. J. 1995, 1, 403.
31. Dannenberg, J. J.; Liotard, D.; Halvick, P.; Rayez, J. C. J. Phys. Chem. 1996, 100, 9631.
32. Okada, K.; Imakura, T.Oda, M.; Murai, H.; Baumgarten, M. J. Am. Chem. Soc. 1996, 118, 3047.
33. Borden, W. T.; Davidson, E. R. J. Am. Chem. Soc. 1997, 99, 4587.
34. Mstsuda K.; Iwamura H. J. Chem. Soc. Perkin Trans. 2 1998, 1023.
35. Hrovat, D. A.; Murcko, M. A.; Lahti, P. M.; Borden, W. T. J. Chem. Soc., Perkin Trans. 2 1998, 1037 and references cited therein.
36. E.-W., O.; Aharony, A.; Levinson, Y. Cond-mat 2001, 7, 1.
37. Baranger, H. U.; Ulmo, D.; Glazman, L. I. Phys. Rev. 2000, B1, 2425.
38. Partonens, B.; Peeters, F. M. Phys. Rev. Lett. 2000, 84, 443.
39. Martin-M., L.; Brey, L.; Tejedor, C. Phys. Rev. 2000, B62, 663.
40. Izumida, W.; Sakai O. Phys. Rev. 2000, B62, 260.
41. Greenberg, M. M.; Blackstock, S. C.; Stone, K. J.; Berson, J. A. J. Am. Chem. Soc. 1989, 111, 3671.
42. Du, P.; Harvot, D. A.; Borden, W. T. J. Am. Chem. Soc. 1986, 108, 8086.
43. Rodriguez, E.; Regureo, M.; Caballol, R. J. Phys. Chem. 2000, 104, 6253.
44. Filatov, M.; Shaik, S. J. Phys. Chem. 2000, 104, 6628.
45. Janicki, S. Z.; Petillo, P. A. J. Chem. A 2000, 104, 8224 and references cited therein.
46. Berson, J. A. Acc. Chem. Res. 1997, 30, 238.
47. Bush, L. C.; Heath, R. B.; Feng, X. W.; Wang, P. A.; Maksimovic, L; Song, A. I. H.; Chung, W. S.; Berinstain, J. C.; Berson, J. A. J. Am. Chem. Soc. 1997, 119, 1046.
48. Bush, L. C.; Maksimovic, L; Feng, X. W.; Lu H. S. M.; Wang, P. A.; Song, A. I. H.; Chung, W. S.; Berinstain, J. C.; Berson, J. A. J. Am. Chem. Soc. 1997, 119, 1416.
49. Lu, H. S. M.; Berson, J. A. J. Am. Chem. Soc. 1997, 119, 1428.
50. Berson J. A.; Mol. Cryst. Liq. Cryst. 1989, 176, 1 and references cited therein.
51. Greenberg, M. M.; Blackstock, S. C.; Berson, J. A. Tetrahedron Lett. 1987, 26, 4263.
52. Haider, K. J.; Berson, J. A. Tetrahedron Lett. 1991, 32, 5305.
53. Stone, K. J.; Greenberg, M. M.; Goodman J. L.; Peters, K. S.; Berson, J. A. J. Am. Chem. Soc. 1986, 108, 8088.
54. Lahti, P. M.; Rossi, A. R.; Berson, J. A. J. Am. Chem. Soc. 1985, 107, 2273.
55. Roth, W. R.; Kowalczik, U.; Maier, G.; Reisenauer, H. P.; Sustmann, R.; Müller, W. Angew. Chem. Sci. Int. Ed. Engl. 1987, 26, 1285.
56. Stone, K. J.; Greenberg, M. M.; Blackstock, S. C.; Berson, J. A. J. Am. Chem. Soc. 1989, 111, 3659.
57. Wan, P.; Brousmiche, D. W.; Chen, C. Z.; Cole, M. L.; Xu, M. Pure Appl. Chem. 2001, 73, 529.
58. Nemoto, H.; Fukumoto, K. Tetrahedron 1998, 54, 5425.
59. Liu, W.-D.; Chi, C.-C.; Pai, I.-F.; Wu, A.-T.; Chung, W.-S. J. Org. Chem. 2002, 67, 9267.
60. Wu, A.-T.; Liu, W.-D.; Chung, W.-S. J. Chin. Chem. Soc. 2002, 49, 77.
61. Liu, J.-H.; Wu, A.-T.; Huang, M.-H.; Wu, C.-W.; Chung, W.-S. J. Org. Chem. 2000, 65, 3395.
62. Chung, W.-S.; Lin, J.-H. Chem. Commun. 1997, 205.
63. Chung, W.-S.; Lin,W.-J.; Liu,W.-D.; Chen, L.-G. J. Chem. Soc., Chem. Commun. 1995, 2537.
64. Cichra, D.; Platz, M. S.; Berson, J.A. J. Am. Chem. Soc. 1977, 99, 8507.
65. Andersen, K. K.; Foley, J.; Perkins, R.; Gaffield, W.; Papanikalaoou, N. J. Am. Chem. Soc. 1964, 86, 5637.
66. Pirkle, W. H.; Hoekstra, M. S. J. Am. Chem. Soc. 1976, 98, 1832.
67. For examples of radical trapping by thiols, see Ottenheijm, H. C. J. J. Org. Chem. 1981, 46, 5408. or Tome, A. C.; Caceleiro, J. A. S.; Storr, R. C. Tetrahedron 1996, 52, 1723.
68. Storr et al. reported a similar observation of conjugate addition of thiol nucleophiles on the pyrimidin-4-ones generated from the corresponding sulfolene with SO2 extrusion.
69. Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992, 114, 9369.
70. Ando, K.; Asksdegawa, N.; Takayama, H. J. Chem. Soc.,Chem. Commun. 1991, 1765.
71. Ando, K.; Kankake, M.; Suzuki, T.; Takayama, H. Synlett 1994, 741.
72. Konno, K.; Kawakami, Y.; Hayashi, T.; Takayama, H. J. Chem. Soc. Perkin Trans. 1 1994, 1371.
73. Chou, T.-S.; Tseng, H.-H. Tetrahedron Lett. 1995, 36, 7105.
74. Chou, S.-S.; Lee, C.-S.; Cheng, M.-C.; Tai, H.-P. J. Org. Chem. 1994, 59, 2010.
75. Ando, K.; Kankake, M.; Suzuki T.; Takayama H. Tetrahedron 1995, 51, 129.
76. Ando, K.; Takayama, H. Tetrahedron 1994, 37, 1417.
77. Dgguin, B.; Vogel, P. J. Am. Chem. Soc. 1992, 114, 9210.
78. Suarez, D.; Sordo, T. L.; Sordo, J. A. J. Am. Chem. Soc. 1994, 116, 763.
79. Suarez, D.; Sordo, T. L.; Sordo, J. A. J. Org. Chem. 1995, 60, 2848.
80. Fernandez, T.; Suarez D.; Sordo, J. A.; Monnat, F.; Roversi, E.; Castro, A. E.; Schenk, K.; Vogel, P. J. Org. Chem. 1998, 63, 9490.
81. Fernadez, T.; Sordo, J. A.; Monnat, F.; Deguin B.; Vogel, P. J. Am. Chem. Soc. 1998, 120, 13276.
82. Monnat, F.; Vogel, P.; Rayon, V. M.; Sordo, J. A. J. Org. Chem. 2002, 67, 1882.
83. Monnat, F.; Vogel, P.; Rayon, V. M.; Sordo, J. A. Helvetica Chimica acta. 2002, 85, 712.
84. Roversi, E.; Scoppelliti, R.; Solari, E.; Estoppey, R.; Vogel, P.; Brana, P.; Menendez, B.; Sordo, J. A. Chem. Eur. J. 2002, 8, 1336.
85. Monnat, F.; Vogel, P.; Menendez, B.; Sordo, J. A. Angew. Chem.2003, 115,4054.
86. Markovic, D.; Roversi, E.; Scoppelliti, R.; Vogel, P.; Meana, R.; Sordo, J. A. Chem. Eur. J. 2003, 9, 4911.
87. Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer-Verlag: Berlin 1983.
88. Flynn, C. R.; Michl, J. J. Am. Chem. Soc. 1973, 95, 5802.
89. Flynn, C. R.; Michl, J. J. Am. Chem. Soc. 1974, 96, 3280.
90. Wintgens, V.; Netto-Ferreira J. C.; Casal, H. L.; Scaiano, J. C. J. Am. Chem.Soc. 1999, 112, 2363.
91. McCullough, J. J. Acc. Chem. Res. 1980, 13, 270.
92. Charlton, J. L.; Durst, T. Tetrahedron Lett. 1973, 25,5287.
93. Jung, F.; Molin, M.; Van der Elzen, R.; Durst, T. J. Am. Chem. Soc. 1974, 96, 935.
94. Durst, T.; Huang, J. C.; Sharama, N. K.; Smith, D. J. H.; Can. J. Chem. 1978, 56,512.
95. Durst, T.; Charlton, J. L.; Mount, D. Can. J. Chem. 1986, 64, 246.
96. Tang, K.-C.; Lee, S.-J.; Chi, S.-h.; Lu K.-L.; Chen W.-C.; Yu, C.-h.; Chen I-C.; Wu S.-L;Chen, C.-C.; Liu, W.-D.; Chen, L.-J.;Wang, N. S.; Chung, W-S Journal of Photochemistry and Photobiology A 2005, 170, 69
97. Gaussian 03 , Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
98. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
99. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
100. Hartree, D. R. Proc. Cambridge Phil. Soc.1928, 24, 89.
101. Shavitt, I. The method of configuration interaction, in Methods of Electronic Structure Theory, pages 189-275. Plenum: New York 1977.
102. Steinfeld, J. I. Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy. MIT: Cambridge, MA 1985.
103. Thomas, L. H. Proc. Cambridge Phil. Soc.1927, 23, 542.
104. Slater, J. C.; Quantum Theory of Molecular and Solids Vol. 4 : The Self-Consistent Field for Molecular Solids, McGraw-Hill: New York 1974.
105. Becke, A. D. Phys. Rev. A. 1988, 38, 3098.
106. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 23, 5048.
107. Miehlich, B.; Savin, A.; Stoll H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
108. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
109. Thom, H.; Dunning, Jr. J. Chem. Phys. 1989, 90, 1007.
110. Gonzalez, C.; Schlegel, H. B.; J. Chem. Phys. 1989, 90, 2154.
111. Gonzalez, C.; Schlegel, H. B.; J. Phys. Chem. 1990, 94, 5523.
112. Hegarty, D.; Robb, M. A. Mol. Phys. 1979, 38, 1795.
113. Eade. R. H. E.; Robb, M. A. Chem. Phys. Lett. 1981, 83, 362.
114. Lahti, P. M.; Rossi, A. R.; Berson, J. A. J. Am. Chem. Soc. 1985, 107, 2273.
115. Stephens, P. J.;Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
116. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 59, 997.
117. Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Phys. Rev. Lett. 1996, 76, 1212.
118. Burke, K. and Gross, E.K. U. A guided tour of time-dependent density functional theory, Springer-Verlag 1998. p 116 - 146.
119. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford 1990.
120. Dunning, Jr. T. H.; J. Chem. Phys. 1989, 90, 1007.
121. Woon, D. E.; Dunning, Jr. T. H J. Chem. Phys. 1993, 98, 1358.
122. Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.
123. Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.
124. Du, P.; Borden, W. T. J. Am. Soc. 1987, 109, 930.
125. Nachtigall, P.; Jorden, K. D. J. Am. Soc. 1992, 114, 4743.
126. Nachtigall, P.; Jorden, K. D. J. Am. Soc. 1993, 115, 270.
127. Matsuda K.; Iwamura H. J. Am. Chem. Soc. 1997, 119, 7412.
128. Pittner, J.; Nachtigall, P.; Carsky, P. J. Phys. Chem. A 2001, 105, 1354.
129. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
130. 江進福 物理雙月刊 2001, 23, 549.
131. 陳維成 碩士論文 清華大學 1999.
132. 齊三慧 碩士論文 清華大學 2001.
133. Levine, I. N. Quantum Chemistry, Prentice-Hall: New York 2001.
134. Foresman J. B. and Frisch E. Exploring Chemistry with Electronic Structure Methods, Gaussian 1996.
135. Gaussian03 manual
136. 國家高速網路與計算中心”等”網路資源