簡易檢索 / 詳目顯示

研究生: 丹尼斯
Tuyogon, Dennis San Jose
論文名稱: 類金屬(無機銻及砷)在植物中的生物攝取機制與發展電化學方法分析銻及其物種
Bio-uptake of metalloids (inorganic antimony and arsenic) by plants and development of electroanalytical methods for antimony detection and speciation
指導教授: 王竹方
Wang, Chu-Fang
口試委員: Walley, Peter Glen
Walley, Peter Glen
Lenoble, Veronique
Lenoble, Veronique
董瑞安
Doong, Ruey-An
楊樹森
Young, Shue-Sen
Salaun, Pascal
Salaun, Pascal
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 490
中文關鍵詞: 電化學伏安法電化學伏安法類金屬物種分析
外文關鍵詞: Chemical Speciation, voltammetry, metalloid, speciation, arsenic, antimony
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類金屬元素如砷及銻雖然在自然界中普遍存在,但在工業上的使用卻促使環境中部份區域的濃度明顯增加,造成土壤或地下水汙染;了解砷及銻在環境中的流布、遷移以及在生物體內與地質圈中的化學特性對於防治相關汙染極其重要。銻儘管具有毒性,但對比於其他重金屬仍未受到足夠的重視,且相關的分析技術仍有待精進。化學分析中的物種分析技術可有效了解環境中類金屬的相關毒性與宿命流布,但在使用如感應耦合電漿技術或液相層析質譜技術時常會受限於待測物不同的氧化態或是有限的穩定有機物種,若可分析或檢測較不穩定且相對低濃度的物種,將可更全面的了解類金屬元素在環境中的傳輸及分布狀況。研究上有多種光譜分析技術可量測砷及銻之總濃度與環境中不同的物種濃度,但通常這些儀器體積龐大、昂貴且不適合在樣品現場進行分析;而電化學方法具有價格合理、可移動、體積小、操作便利且可在樣品現場進行分析,特別是應用金微線圈電極,可有效分析無機砷及銻的物種,具有成本優勢、可於採樣現場分析且能偵測較不穩定的物種。
    本研究嘗試了解類金屬物種的最終穩定型態與其對應的傳輸流布過程,研究目的包括應用電化學伏安法了解砷及銻在羧酸類溶液—木質部樹液之主要成分內的傳輸情形。此技術也預期能了解銻與無機物或有機物的錯合模式,更深一層認識銻的微弱、易解離物種及穩定錯合物,特別是目前還未有相關電化學方法探討砷及銻在酸鹼值5的環境下之物種資訊,因為這些物種在此環境下多半形成微弱的有機錯化物而無法以傳統層析方法偵測,伏安法預期將可有效補充傳統層析法或其他混合技術未能取得之資訊。


    Metalloids like arsenic (As) and antimony (Sb) are naturally present at low concentrations but the increased use of this metalloids in the environment has led to environmental soil and groundwater contamination issues and understanding their biogeochemical cycling is of prime importance to predict potential contamination issues. Despite its toxicity, Sb received little analytical attention compared to other toxic heavy metals. However, speciation analysis is necessary to understand the toxicity and fate of each metalloid species in the environment. The speciation of metalloids is however often limited to the differentiation of oxidation states and identification of stable organic species by techniques such as ICP and LC-MS. The detection and identification of more reactive, relatively weak complexes that can play a preponderant role in the transport of these elements are however much less known. There is a wide range of available spectroscopic techniques for total Sb and As determination and speciation in real environment samples. But the equipment often used for such analysis are bulky, expensive, and immobile. The necessity for a cheap, portable, smaller and simpler analytical technique that can be used in the field were all the reasons for using electrochemical methods. One of the techniques is by using a gold microwire electrode that is well suited for the speciation of inorganic arsenic and antimony that has the advantage of low cost, portability, and may detect weak complex.
    The main focus of this study is trying to understand where metalloid species are ending up and how they are being transported. This thesis investigated the bio-uptake of metalloids (inorganic antimony and arsenic) by plants and the development of electroanalytical methods for antimony detection and speciation.
    Bio-uptake of metalloids were using a hydroponic experiment of cucumber plant chosen as a model plant to assess the impact of As or Sb species, plant age, exposure duration and metalloid concentration to overall plant morphology. A new method of microdialysis was developed. Being less destructive and less invasive, it can be a useful tool for xylem sap sampling allowing researchers to simulate nutrient/toxic metal uptake, translocation and absorption while taking into consideration the effect of transpiration.
    The other aim of this study is to use voltammetry to study complexation of such elements with e.g. carboxylic acids, preponderant components of xylem sap that might strongly affect the translocation of As and Sb. Voltammetric methods were developed for (1) complexation studies of Sb(III) with xylem sap samples and determination of stability constants of Sb(III) with low molecular weight ligands and cation mediated reduction of Sb(V) using monovalent, divalent and trivalent cations. We have demonstrated the feasibility to quantitatively study the complexation of the presence of Sb(III) complex with low molecular weight ligands, specifically EDTA, DTPA, TA, and GSH using a voltammetric method (pseudopolarography on Au electrode) at ppb levels. The technique may also be that will be used to gain insights into the complexation patterns of inorganic and organic bound Sb and highlight the formation of weak, fast dissociating species as well as inert, stable, complexes. Voltammetry may complement nicely the commonly that will be used chromatographic and hyphenated techniques.

    ABSTRACT III TABLE OF CONTENT IV ABBREVIATIONS XII CHAPTER 1 INTRODUCTION 1 INDEX OF FIGURES 2 INDEX OF TABLES 2 1.1 INTRODUCTION 4 1.2 SCOPES AND OBJECTIVES OF THE THESIS 6 1.3 THE ORGANISATION OF THE THESIS 7 1.4 GENERAL ASPECTS 9 1.4.1 ANTIMONY-GENERAL 9 1.4.2 ARSENIC - GENERAL 10 1.5 SB AND AS IN THE ENVIRONMENT 13 1.5.1 ANTIMONY IN THE ENVIRONMENT 16 1.5.2 ARSENIC IN THE ENVIRONMENT 18 1.6 SB AND AS UPTAKE IN PLANTS 21 1.6.1 ANTIMONY IN PLANTS 21 1.6.2 ARSENIC IN PLANTS 22 1.7 XYLEM SAP, PLANT TRANSPORT, AND NUTRIENT AND WATER UPTAKE 26 1.7.1 XYLEM SAP COLLECTION METHODS 28 1.7.1.1 DESTRUCTIVE TECHNIQUES 29 1.7.1.1.1 ROOT EXUDATE METHOD 29 1.7.1.1.2 CENTRIFUGATION 29 1.7.1.1.3 SAMPLING FROM OTHER PLANT PARTS 30 1.7.1.1.3.1 SAMPLING FROM OTHER PLANT PARTS 30 1.7.1.1.3.2 PRESSURE CHAMBER 30 1.7.1.1.3.3 THE PASSIOURA METHOD 30 1.7.1.2 NON-DESTRUCTIVE TECHNIQUES 31 1.7.1.2.1 INSECTS FEEDING ON XYLEM 31 1.7.1.2.2 THE XYLEM PRESSURE PROBE 31 1.7.2 ANALYTICAL TECHNIQUES 32 1.7.2.1 ANALYTICAL TECHNIQUES FOR SB DETERMINATION 32 1.7.2.2 ANALYTICAL TECHNIQUES FOR AS DETERMINATION 34 1.7.2.3 ELECTROANALYTICAL SPECIATION FOR SB AND AS 35 1.7.2.3.1 MERCURY ELECTRODES 36 1.7.2.3.2 CARBON ELECTRODES 37 1.7.2.3.3 GOLD ELECTRODES 37 1.8 REFERENCES 38 CHAPTER 2 71 ARSENIC AND ANTIMONY SPECIES IMPACT ON CUCUMBERS – HYDROPONIC EXPERIMENT 71 INDEX OF FIGURES 72 INDEX OF TABLES 75 2.1 INTRODUCTION 76 2.2 AIMS AND OBJECTIVES 80 2.3 MATERIALS AND METHODS 81 2.3.1 CHEMICALS 81 2.3.2 MODIFIED HOAGLAND'S NUTRIENT SOLUTION 82 2.3.3 PLANT GROWTH 83 2.3.3.1 SEED GERMINATION 83 2.3.3.2 SEED DISINFECTION METHOD 84 2.3.4 HYDROPONIC EXPERIMENTS 84 2.3.5 TREATMENTS 85 2.3.5.1 PLANT SET A 85 2.3.5.2 PLANT SET B 86 2.3.6 PLANT SAMPLING AND STORAGE 88 2.3.6.1 PLANT SAMPLING 88 2.3.6.2 XYLEM SAP SAMPLING – ROOT EXUDATION 88 2.3.7 MEASUREMENT OF PLANT GROWTH PARAMETERS 89 2.3.7.1 PLANT HEIGHT 89 2.3.7.2 LEAF AREA (DIGITAL IMAGE ANALYSIS METHOD) 89 2.3.7.3 NUMBER OF LEAVES AND FLOWERS 90 2.3.7.4 BIOMASS AND ROOT MASS 90 2.3.7.5 FOLIAR CHLOROPHYLL CONTENT 91 2.3.8 TOTAL METAL ANALYSIS OF THE PLANT 91 2.3.9 QUANTIFICATION OF METALS IN THE SAP, NUTRIENT SOLUTION, AND PLANT PARTS 92 2.3.10 STATISTICAL ANALYSIS 93 2.4 RESULTS 94 2.4.1 PLANT GROWTH MEASUREMENTS 94 2.4.1.1 LEAF AREA 94 2.4.1.2 PLANT HEIGHT 95 2.4.1.3 NUMBER OF LEAVES 96 2.4.1.4 NUMBER OF FLOWERS 97 2.4.1.5 FOLIAR CHLOROPHYLL 98 2.4.1.6 BIOMASS 99 2.4.2 TOTAL SB AND AS IN CUCUMBER PLANTS 101 2.5 DISCUSSIONS AND CONCLUSIONS 108 2.6 REFERENCES 115 CHAPTER 3 ARSENIC AND ANTIMONY SPECIATION STUDY USING MICRODIALYSIS TECHNIQUE AND ICP-MS 178 INDEX OF FIGURES 179 INDEX OF TABLES 179 3.1 INTRODUCTION 180 3.2 AIMS AND OBJECTIVES 183 3.4 MATERIALS AND METHODS 185 3.4.1 Chemicals 185 3.4.2 Modified Hoagland’s nutrient Solution 185 3.4.3 Plant growth 185 3.4.3.1 Seed germination and transplantation 185 3.4.3.2 Treatment 187 3.4.4 Hydroponic experiments 187 3.4.4.1 Plant set-up 187 3.4.4.2 Amendment with As and Sb 188 3.4.5 Plant Sampling and plant growth parameters 188 3.4.5.1 Biomass 189 3.4.5.2 Plant Height 189 3.4.5.3 Number of Leaves 189 3.4.6 Xylem sap sampling 189 3.4.6.1 Root Exudation 189 3.4.6.2 Microdialysis technique 190 3.4.6.2.1 Automatic syringe pump 190 3.4.6.2.2 Syringe pump calibration 192 3.4.7 High-pressure bomb acid digestion 193 3.4.8 Quantification of metals in the sap and plant parts 194 3.4.9 Statistical Analyses 194 3.5 RESULTS 196 3.5.1 MICRODIALYSIS PUMP CALIBRATION AND RECOVERY 196 3.5.2 QUALITY CONTROL 196 3.5.3 PLANT GROWTH ANALYSIS 198 3.5.3.1 NUMBER OF LEAVES 199 3.5.3.2 PLANT HEIGHT 200 3.5.3.3 BIOMASS 201 3.5.4 SB AND AS UPTAKE AND TRANSLOCATION 203 3.5.5 SB AND AS UPTAKE IN XYLEM SAP- MICRODIALYSIS 206 3.6 DISCUSSIONS AND CONCLUSIONS 213 3.7 REFERENCES 216 CHAPTER 4 264 ARSENIC AND OTHER HEAVYMETALS ANALYSIS IN RICE BY ICP-MS 264 INDEX OF FIGURES 265 INDEX OF TABLES 265 4.1 INTRODUCTION 267 4.2 AIMS AND OBJECTIVES 272 4.3 MATERIALS AND METHODS 273 4.3.1 CHEMICALS 273 4.3.2 SOIL PREPARATION, COLLECTION, AND BASIC CHARACTERISATION 273 4.3.3 RICE SAMPLE COLLECTION 275 4.3.4 HIGH-PRESSURE BOMB ACID DIGESTION 275 4.3.5 ICP-MS 276 4.3.6 QUALITY CONTROL AND ASSURANCE 277 4.3.7 STATISTICAL ANALYSIS 277 4.4 RESULTS 278 4.4.1 CALIBRATION 278 4.4.2 SOIL PROPERTIES 279 4.4.3 HEAVY METAL ANALYSIS IN RICE 281 4.4.4 CORRELATION OF METAL CONTENT IN RICE 285 4.4.5 HEAVY METAL CONTENTS IN SOILS 286 4.5 DISCUSSIONS AND CONCLUSION 288 4.6 REFERENCES 291 CHAPTER 5 324 DETERMINATION OF STABILITY CONSTANTS OF SB SPECIES WITH MODEL LIGANDS 324 4.6.1 INDEX OF FIGURES 325 4.6.2 INDEX OF TABLES 329 5.1 INTRODUCTION 330 5.2 AIMS AND OBJECTIVES 335 5.3 MATERIALS AND METHODS 336 5.3.1 REAGENTS AND INSTRUMENTATION 336 5.3.2 AU MICROWIRE FABRICATION 337 5.3.3 PRE-TREATMENT 338 5.3.4 VOLTAMMETRIC PARAMETERS USED FOR THE PP EXPERIMENTS 338 5.3.5 PSEUDOPOLAROGRAPHIC METHOD (PP) 341 5.3.6 DETERMINATION OF STABILITY CONSTANTS OF SB WITH L.M.W. MODEL LIGANDS 341 5.4 RESULTS 344 5.4.1 PSEUDOPOLAROGRAPHY OF SB(OH)3 ON A GOLD ELECTRODE IN NON-COMPLEXING MEDIA 344 5.4.2 CALIBRATION AND ELECTRODE STABILITY 344 5.4.3 PSEUDOPOLAROGRAMS (PP) OF SB(OH)3 AT PH 3. 347 5.4.4 VARYING DEPOSITION TIME 349 5.4.5 STABILITY CONSTANT DETERMINATION 351 5.4.5.1 SB3+- EDTA SYSTEM 351 5.4.5.1.1 VISUAL MINTEQ MODELLING 351 5.4.5.1.2 VOLTAMMETRY (EXPERIMENTAL) 352 5.4.5.2 SB3+- DTPA SYSTEM 355 5.4.5.2.1 VISUAL MINTEQ MODELLING 355 5.4.5.2.2 VOLTAMMETRY (EXPERIMENTAL) 355 5.4.5.3 SB3+- TARTARIC ACID (TA) SYSTEM 358 5.4.5.3.1 VISUAL MINTEQ MODELLING 358 5.4.5.3.2 VOLTAMMETRY (EXPERIMENTAL) 359 5.4.5.4 SB3+- GLUTATHIONE (GSH) SYSTEM 361 5.4.5.4.1 VISUAL MINTEQ MODELLING 361 5.4.5.4.2 VOLTAMMETRY (EXPERIMENTAL) 361 5.4.6 COMPLEXATION OF SB3+ IN XYLEM SAP 363 5.5 DISCUSSIONS AND CONCLUSION 368 5.6 REFERENCES 373 CHAPTER 6 405 CATION MEDIATED REDUCTION OF ANTIMONATE SB(V) IN MILDLY ACIDIC AND NEUTRAL PH 405 INDEX OF FIGURES 406 INDEX OF TABLES 408 6.1 INTRODUCTION 409 6.2 AIMS AND OBJECTIVES 413 6.3 MATERIALS AND METHODS 414 6.3.1 REAGENTS AND MATERIALS 414 6.3.2 INSTRUMENTATION 414 6.3.2.1 DETERMINATION OF SB(V) USING DPASV (DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY) 415 6.3.2.2 ELECTRODE FABRICATION 416 6.3.2.3 GOLD MICROWIRE ELECTRODE SURFACE AREA MEASUREMENT 416 6.3.2.4 ANALYTICAL CAPABILITY OF THE CATION MEDIATED REDUCTION PROCESS FOR DETERMINATION OF SB(V) IN MINERAL WATER. 417 6.4 RESULTS 418 6.4.1 INFLUENCE OF CATIONS ON THE REDUCTION OF SB(V) IN 10 MM HCL 418 6.4.1.1 EFFECT OF NA, K, MG AND CA IONS 418 6.4.1.2 EFFECT OF CONCENTRATIONS OF CATIONS ON PSEUDOPOLAROGRAMS 421 6.4.1.3 COMPARISON OF PSEUDOPOLAROGRAMS (PP) 424 6.4.1.4 INFLUENCE OF CU TO SB(V) 426 6.4.2 INFLUENCE OF CATIONS ON THE REDUCTION OF SB(V) IN 100 MM HCL 428 6.4.3 INFLUENCE OF CATIONS ON THE REDUCTION OF SB(V) AT NEUTRAL AND ALKALINE PH 429 6.4.4 ANALYTICAL CAPABILITY OF THE CATION MEDIATED REDUCTION PROCESS FOR DETERMINATION OF SB(V) IN MINERAL WATER. 430 6.5 DISCUSSION AND CONCLUSION 433 6.6 REFERENCES 440 CHAPTER 7 477 CONCLUSIONS AND OUTLOOK 477 7.1 CONCLUSIONS AND OUTLOOKS 478 APPENDICES 483 8.1 VISUAL MINTEQ PROCEDURE 483 8.1.1 MODIFICATIONS 483 8.1.2 VISUAL MINTEQ PROCEDURE 484 8.2 RESEARCH PLAN 489

    Abedin, M. J., Feldmann, J. and Meharg, A. A. (2002) ‘Uptake kinetics of arsenic species in rice plants.’ Plant Physiology, 128(3) pp. 1120–1128.
    Ainsworth, N., Cooke, J. A. and Johnson, M. S. (1990a) ‘Distribution of antimony in contaminated grassland: 1- vegetation and soils.’ Environmental Pollution. Elsevier, 65(1) pp. 65–77.
    Ainsworth, N., Cooke, J. A. and Johnson, M. S. (1990b) ‘Distribution of antimony in contaminated grassland: 2- small mammals and invertebrates.’ Environmental Pollution. Elsevier, 65(1) pp. 79–87.
    Alexou, M. and Peuke, A. D. (2013) Plant Mineral Nutrients. Maathuis, F. J. M. (ed.) Plant Mineral Nutrients. Totowa, NJ: Humana Press (Methods in Molecular Biology).
    Ali, H., Khan, E. and Sajad, M. A. (2013) ‘Phytoremediation of heavy metals-Concepts and applications.’ Chemosphere pp. 869–881.
    Althobiti, R. A., Sadiq, N. W. and Beauchemin, D. (2018) ‘Realistic risk assessment of arsenic in rice.’ Food Chemistry. Elsevier Ltd, 257, August, pp. 230–236.
    Álvarez-Fernández, A., Díaz-Benito, P., Abadía, A., López Millán, A. F. and Abadía, J. (2014) ‘Metal species involved in long distance metal transport in plants.’ Frontiers in Plant Science. Frontiers Research Foundation.
    Amarasiriwardena, D. and Wu, F. (2011) ‘Antimony: Emerging toxic contaminant in the environment.’ Microchemical Journal. Elsevier B.V., 97(1) pp. 1–3.
    Ammann, A. A. (2011) ‘Arsenic Speciation Analysis by Ion Chromatography - A Critical Review of Principles and Applications.’ American Journal of Analytical Chemistry, 2011(February) pp. 27–45.
    Anawar, H. M., Freitas, M. C., Canha, N. and Regina, I. S. (2011) ‘Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species.’ Environmental Geochemistry and Health, 33(4) pp. 353–362.
    Aposhian, H. V. and and Aposhian, M. M. (2006) ‘Arsenic toxicology: Five questions.’ Chemical Research in Toxicology pp. 1–15.
    Arnold, L. L., Eldan, M., Nyska, A., van Gemert, M. and Cohen, S. M. (2006) ‘Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice.’ Toxicology, 223(1–2) pp. 82–100.
    Arunakumara, K. K. I. U., Walpola, B. C. and Yoon, M. H. (2013) ‘Current status of heavy metal contamination in Asia’s rice lands.’ Reviews in Environmental Science and Biotechnology, 12(4) pp. 355–377.
    Ashley, P. M., Graham, B. P., Tighe, M. K. and Wolfenden, B. J. (2007) ‘Antimony and arsenic dispersion in the Macleay River catchment, New South Wales: a study of the environmental geochemical consequences.’ Australian Journal of Earth Sciences, 54(1) pp. 83–103.
    ATSDR - Environmental Medicine & Environmental Health Education - CSEM (2013) ‘Arsenic Toxicity Case Study: What Are the Standards and Regulation for Arsenic Exposure?’ Encyclopedia of Metalloproteins pp. 143–143.
    Awika, J. M. (2011) ‘Major cereal grains production and use around the world.’ In ACS Symposium Series, pp. 1–13.
    Bach, C., Dauchy, X., Chagnon, M. C. and Etienne, S. (2012) ‘Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed.’ Water Research, 46(3) pp. 571–583.
    Baker, A. J. M. (1981) ‘Accumulators and Excluders - Strategies in the Response of Plants to Heavy Metals.’ Journal of Plant Nutrition, 3(1–4) pp. 643–654.
    Bakhtiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H. L. and Bi, X. (2014) ‘E nvironment A sia.’ EnvironmentAsia, 7(1) pp. 104–111.
    Basta, N. T. (2006) ‘Heavy Metal Contamination of Soil.’ Soil Science Society of America Journal, 70(5) p. 1819.
    Bastías, J. M. and Beldarrain, T. (2016a) ‘Arsenic translocation in rice cultivation and its implication for human health.’ Chilean journal of agricultural research. Instituto de Investigaciones Agropecuarias, INIA, 76(1) pp. 114–122.
    Bastías, J. M. and Beldarrain, T. (2016b) ‘Arsenic translocation in rice cultivation and its implication for human health.’ Chilean Journal of Agricultural Research, 76(1) pp. 114–122.
    Bellido-Martín, A., Gómez-Ariza, J. L., Smichowsky, P. and Sánchez-Rodas, D. (2009) ‘Speciation of antimony in airborne particulate matter using ultrasound probe fast extraction and analysis by HPLC-HG-AFS.’ Analytica Chimica Acta, 649(2) pp. 191–195.
    Benedict, S. R. (1908) A Reagent For the Detection of Reducing Sugars. J. Biol. Chem.
    Bennett, J. O. and Sicher, R. C. (2011) ‘Protein and metabolite composition of xylem sap from field-grown soybeans ( Glycine max )’ pp. 921–931.
    Bhattacharya, P., Samal, a C., Majumdar, J. and Santra, S. C. (2009) ‘Transfer of Arsenic from Groundwater and Paddy Soil toRice Plant (Oryza sativa L.): A Micro Level Study in West Bengal , India.’ World Journal of Agricultural Sciences, 5(4) pp. 425–431.
    Bi, Z. (2012) Speciation analysis of trace metals in natural waters using vibrating electrodes. Environmental Sciences. UNiversity of Liverpool.
    Bielen, A., Remans, T., Vangronsveld, J. and Cuypers, A. (2013) ‘The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions.’ International Journal of Molecular Sciences pp. 6382–6413.
    Biles, Charles L. and Abeles, F. B. (1991) ‘Xylem sap proteins.’ Plant Physiology, 96(2) pp. 597–601.
    Biles, Charles L and Abeles, F. B. (1991) ‘Xylem Sap Proteins.’ Plant Physiol, 96(July 1991) pp. 597–601.
    Billon, G. and Van Den Berg, C. M. G. (2004) ‘Gold and silver micro-wire electrodes for trace analysis of metals.’ Electroanalysis, 16(19) pp. 1583–1591.
    Borovička, J., Řanda, Z. and Jelínek, E. (2006) ‘Antimony content of macrofungi from clean and polluted areas.’ Chemosphere, 64(11) pp. 1837–1844.
    Bouman, B. A. M. and Tuong, T. P. (2001) ‘Field water management to save water and increase its productivity in irrigated lowland rice.’ Agricultural Water Management, 49(1) pp. 11–30.
    Bowen, H. J. M. (Humphry J. M. (1979) Environmental chemistry of the elements. London ;;New York: Academic Press.
    Brackin, R., Näsholm, T., Robinson, N., Guillou, S., Vinall, K., Buckley, S., Lakshmanan, P., Schmidt, S. and Inselsbacher, E. (2016) ‘Microdialysis-a new technology for investigating soil nitrogen fluxes in the rhizosphere.’ Proceedings of the International Nitrogen Initiative 2016 Conference, (December) pp. 4–8.
    Brammer, H. and Ravenscroft, P. (2009) ‘Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia.’ Environment International. Elsevier Ltd pp. 647–654.
    Brihaye, C. and Duyckaerts, G. (1982) ‘Determination of traces of metals by anodic stripping voltammetry at a rotating glassy carbon ring—disc electrode.’ Analytica Chimica Acta, 143 pp. 111–120.
    Broadley, M., Brown, P., Cakmak, I., Rengel, Z. and Zhao, F. (2011) ‘Function of Nutrients: Micronutrients.’ In Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Elsevier Inc., pp. 191–248.
    Brochu, C., Jingyu Wang, Roy, G., Messier, N., Wang, X. Y., Saravia, N. G. and Ouellette, M. (2003) ‘Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites.’ Antimicrobial Agents and Chemotherapy. American Society for Microbiology (ASM), 47(10) pp. 3073–3079.
    Brown, S. D. and Kowalski, B. R. (1979) ‘Pseudopolarographic Determination of Metal Complex Stability Constants in Dilute Solution by Rapid Scan Anodic Stripping Voltammetry.’ Analytical Chemistry, 51(13) pp. 2133–2139.
    Buckley, S., Brackin, Richard, A. and Schmidt, S. (2016) ‘Microdialysis-a sensitive method for estimating plant-available N released during litter decomposition.’ Proceedings of the International Nitrogen Initiative Conference 2016, (December).
    Buckley, S., Brackin, R., J€, S., N€ Asholm, T. and Schmidt, S. (2020) ‘Microdialysis in soil environments: Current practice and future perspectives.’ Soil Biology and Biochemistry, 143 p. 107743.
    Buckley, S., Brackin, R., Näsholm, T., Schmidt, Susanne, A. and Jämtgård, S. (2017) ‘Improving in situ recovery of soil nitrogen using the microdialysis technique.’ Soil Biology and Biochemistry, 114 pp. 93–103.
    Buckley, S., Brackin, R. and Schmidt, S. (n.d.) ‘Microdialysis’ p. 3.
    Burló, F., Guijarro, I., Carbonell-Barrachina, A. A., Valero, D. and Martínez-Sánchez, F. (1999) ‘Arsenic species: Effects on and accumulation by tomato plants.’ Journal of Agricultural and Food Chemistry, 47(3) pp. 1247–1253.
    C.M.G., K. G.-W. S. P. van den B., Gibbon-Walsh, K., Salaün, P. and van den Berg, C. M. G. (2012) ‘Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode.’ Analytica Chimica Acta. Elsevier B.V., 710 pp. 50–57.
    Cabalda, M. V, Banaag, M. A. and Garces, R. B. (2002) Sustainable Development in The Philippine Minerals Industry: A Baseline Study. M.V. Cabalda P.N.T. Tidalgo & R.B. Garces, M. A. B. (ed.) Mining, Minerals and Sustainable Development Project (MMSD). England: International Institute for the Environment and Development (IIED).
    Cai, Y., Su, J. and Ma, L. Q. (2004) ‘Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements.’ Environmental Pollution, 129(1) pp. 69–78.
    Cal-Prieto, M. J., Carlosena, A., Andrade, J. M., Martínez, M. L., Muniategui, S., López-Mahía, P. and Prada, D. (2001) ‘Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments.’ Water, Air, and Soil Pollution. Springer, 129(1–4) pp. 333–348.
    Canadian Council of Ministers of the Environment (2007) Canadian soil quality guidelines for the protection of environmental and human health. Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment. Winnipeg. [Online] http://goo.gl/AePSg4.
    Canepari, S., Marconi, E., Astolfi, M. L. and Perrino, C. (2010) ‘Relevance of Sb(III), Sb(V), and Sb-containing nano-particles in urban atmospheric particulate matter.’ Analytical and Bioanalytical Chemistry, 397(6) pp. 2533–2542.
    Carey, A. M., Lombi, E., Donner, E., De Jonge, M. D., Punshon, T., Jackson, B. P., Guerinot, M. Lou, Price, A. H. and Meharg, A. A. (2012) ‘A review of recent developments in the speciation and location of arsenic and selenium in rice grain.’ Analytical and Bioanalytical Chemistry, 402(10) pp. 3275–3286.
    Carneado, S., Hernández-Nataren, E., López-Sánchez, J. F. and Sahuquillo, A. (2015) ‘Migration of antimony from polyethylene terephthalate used in mineral water bottles.’ Food Chemistry. Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11, 08028 Barcelona, Spain. Electronic address: sergio_carneado@ub.edu. Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11, 08028 Barcelona, Sp, 166 pp. 544–550.
    Carolyn, P. and Aqilah, F. A. T. (2014) ‘Assessment of heavy metals accumulation in paddy rice (Oryza sativa).’ African Journal of Agricultural Research, 9(41) pp. 3082–3090.
    Casiot, C., Ujevic, M., Munoz, M., Seidel, J. L. and Elbaz-Poulichet, F. (2007) ‘Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France).’ Applied Geochemistry, 22(4) pp. 788–798.
    Cavicchioli, A., La-Scalea, M. A., Gutz, G. R., Gutz, I. G. R. and Gutz, G. R. (2004) ‘Analysis and Speciation of Traces of Arsenic in Environmental , Food and Industrial Samples by Voltammetry : a Review.’ Electroanalysis, 16(9) pp. 697–711.
    Chakraborti, D., Rahman, M. M., Das, B., Nayak, B., Pal, A., Sengupta, M. K., Hossain, M. A., Ahamed, S., Sahu, M., Saha, K. C., Mukherjee, S. C., Pati, S., Dutta, R. N. and Quamruzzaman, Q. (2013) ‘Groundwater arsenic contamination in Ganga-Meghna-Brahmaputra plain, its health effects and an approach for mitigation.’ Environmental Earth Sciences, 70(5) pp. 1993–2008.
    Chang, C.-Y., Wang, C.-F., Mui, D. T. and and Chiang, H.-L. (2009) ‘Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: A case study for BCR 176.’ Journal of Hazardous Materials, 163(2–3) pp. 578–587.
    Chapman, C. S. and Van Den Berg, C. M. G. G. (2007) ‘Anodic stripping voltammetry using a vibrating electrode.’ Electroanalysis, 19(13) pp. 1347–1355.
    Chaurasia, C. S., Müller, M., Bashaw, E. D., Benfeldt, E., Bolinder, J., Bullock, R., Bungay, P. M., DeLange, E. C. M., Derendorf, H., Elmquist, W. F., Hammarlund-Udenaes, M., Joukhadar, C., Kellogg, D. L., Lunte, C. E., Nordstrom, C. H., Rollema, H., Sawchuk, R. J., Cheung, B. W. Y., Shah, V. P., Stahle, L., Ungerstedt, U., Welty, D. F. and Yeo, H. (2007) ‘AAPS-FDA workshop white paper: Microdialysis principles, application and regulatory perspectives.’ In Pharmaceutical Research, pp. 1014–1025.
    Chen, Z. L., Farzana Akter, K., Rahman Mahmudur, M. and Naidu, R. (2006) ‘Speciation of arsenic by ion chromatography inductively coupled plasma mass spectrometry using ammonium eluents.’ Journal of Separation Science, 29(17) pp. 2671–2676.
    Cheng, T. and Sun, H. (2014) ‘CHAPTER 25. Antimony and Bismuth.’ In, pp. 768–799.
    Chepkemoi, J. (2017) What Is The Environmental Impact Of The Mining Industry? First Break.
    Cheraghi, M., Mosaed, H. P., Lorestani, B. and Yousefi, N. (2012) ‘Heavy metal contamination in some rice samples.’ Electronic Journal of Environmental, Agricultural and Food Chemistry, 11(5) pp. 424–432.
    Choudhury, B. U., Malang, A., Webster, R., Mohapatra, K. P., Verma, B. C., Kumar, M., Das, A., Islam, M. and Hazarika, S. (2017) ‘Acid drainage from coal mining: Effect on paddy soil and productivity of rice.’ Science of the Total Environment. Elsevier B.V., 583, April, pp. 344–351.
    Ciminelli, V. S. T., Gasparon, M., Ng, J. C., Silva, G. C. and Caldeira, C. L. (2017) ‘Dietary arsenic exposure in Brazil: The contribution of rice and beans.’ Chemosphere. Elsevier Ltd, 168, February, pp. 996–1003.
    Cinzia Perrino, S. C. E. M. M. L. A. (2011) ‘Determination of Sb(III), Sb(V) and identification of Sb-containing nanoparticles in airborne particulate matter.’ Procedia Environmental Sciences, 4 pp. 209–217.
    Çirmi, D., Aydin, R. and Köleli, F. (2015) ‘The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode.’ Journal of Electroanalytical Chemistry, 736 pp. 101–106.
    Clark, R. B., Tiffin, L. O. and Brown, J. C. (1973) ‘Organic Acids and Iron Translocation in Maize Genotypes.’ Plant Physiology, 52(2) pp. 147–150.
    Clemens, S. and Ma, J. F. (2016) ‘Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods.’ Annual Review of Plant Biology, 67(1) pp. 489–512.
    Correia, M. M., Alves, S., Simões Gonçalves, M. D. L. and Nabais, C. (2006) ‘Dynamic modelling of nickel complexation in xylem sap of Quercus ilex: A voltammetric study.’ Electroanalysis, 18(8) pp. 814–822.
    Cullen, W. R. and Reimer, K. J. (2016) ‘CHAPTER 8. Arsenic and the Evening Meal.’ In Arsenic is Everywhere: Cause for Concern?, pp. 221–265.
    Daniels, R., Rush, C. C. and Bauer, L. (1960) ‘Textbook errors, 24: The fehling and benedict tests.’ Journal of Chemical Education, 37(4) p. 205.
    Daus, B. and Hansen, H. R. (2016) ‘Analysis of antimony species-lessons learnt from more than two decades of environmental research.’ Environmental Chemistry, 13(6) pp. 913–918.
    Dawe, B. D., Organisation, A. and Nations, U. (2015) ‘Rice in Asia: Paddy-whacked.’ Economist (United Kingdom), 411(8960).
    Deshmukh, R., K. Tripathi, D. and Guerriero, G. (2020) Metalloids in Plants. Advances and future prospects.
    Dobermann, A., Dawe, D., Roetter, R. P. and Cassman, K. G. (2000) ‘Reversal of rice yield decline in a long-term continuous cropping experiment.’ Agronomy Journal, 92(4) pp. 633–643.
    Domingo, L. E. and Kyuma, K. (1983) ‘Trace elements in tropical asian paddy soils: I. total trace element status.’ Soil Science and Plant Nutrition, 29(4) pp. 439–452.
    Dortsiou, M. and Kyriacou, G. (2009) ‘Electrochemical reduction of nitrate on bismuth cathodes.’ Journal of Electroanalytical Chemistry, 630(1–2) pp. 69–74.
    Duester, L., Diaz-Bone, R. A., Kösters, J. and Hirner, A. V. (2005) ‘Methylated arsenic, antimony and tin species in soils.’ In Journal of Environmental Monitoring, pp. 1186–1193.
    Dushenkov, S. (2003) ‘Trends in phytoremediation of radionuclides.’ In Plant and Soil, pp. 167–175.
    E.Chirila, L. S. and (2006) ‘Sampling and sample pretreatment for environmental analysis elisabeta s. chirila 1 *, camelia draghici 2 and simona dobrinas 1.’ chemical as intentional and Global enviromental Threats pp. 7–28.
    Elmquist, W. F. and Sawchuk, R. J. (1997) ‘Application of microdialysis in pharmacokinetic studies.’ Pharmaceutical Research pp. 267–288.
    Emamverdian, A. and Ding, Y. (2017) ‘Effects of heavy metals’ toxicity on plants and enhancement of plant defense mechanisms of Si-mediation “ Review.”’ International Journal of Environmental & Agriculture Research, (4) pp. 41–51.
    Emamverdian, A., Ding, Y., Mokhberdoran, F. and Xie, Y. (2015) ‘Heavy metal stress and some mechanisms of plant defense response.’ Scientific World Journal. Hindawi Publishing Corporation, 2015 pp. 7–9.
    EPA (2004) ‘EPA Method 6020A: ICP-MS. Official Name: EPA Method 6020A, Inductively Coupled Plasma-Mass Spectrometry.’ EPA methods, 6.
    Epstein, E. and and Bloom, A. J. (1972) Mineral Nutrition of Plants: Principles and Perspectives. 2nd ed., Sunderland, Massachusetts: Sinauer Associates, Inc.
    Fan, Y., Zhu, T., Li, M., He, J. and Huang, R. (2017) ‘Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China.’ Journal of Healthcare Engineering. Hindawi, 2017.
    Fao (2011) Crop Prospects and Food Situation. UN (ed.) North. Rome: FAO.
    FAO (2016) GIEWS - Crop Prospects and Food Situation, No.1,March 2016.
    FAO and WHO (2019) ‘REPORT OF THE 11th SESSION OF THE CODEX COMMITTEE ON CONTAMINANTS IN FOODS. joint fao/who food standards programme codex alimentarius commission 40th Session. CICG, Geneva, Switzerland. 17 - 22 July 2017.’ Codex, (April) pp. 1–69.
    Farid, M., Shakoor, M., Ehsan, S., Ali, S., Zubair, M. and Hanif, M. (2013) ‘Morphological, physiological and biochemical responses of different plant species to Cd stress.’ Int J Chem Biochem Sci, 3(March) pp. 53–60.
    Farnese, F. S., Oliveira, J. A., Farnese, M. S., Gusman, G. S., Silveira, N. M. and Siman, L. I. (2014) ‘Uptake arsenic by plants: Effects on mineral nutrition, growth and antioxidant capacity.’ Idesia (Arica), 32(1) pp. 99–106.
    Fashola, M. O., Ngole-Jeme, V. M. and Babalola, O. O. (2016) ‘Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance.’ International Journal of Environmental Research and Public Health. MDPI AG.
    Feldmann, J., Salaün, P. and Lombi, E. (2009a) ‘Critical review perspective: elemental speciation analysis methods in environmental chemistry - moving towards methodological integration.’ Environmental Chemistry. CSIRO, 6(4) p. 275.
    Feldmann, J., Salaün, P. and Lombi, E. (2009b) ‘Critical review perspective: elemental speciation analysis methods in environmental chemistry moving towards methodological integration.’ Environmental Chemistry, 6(4) pp. 275–289.
    Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R. and Guo, J. (2013) ‘The uptake and detoxification of antimony by plants: A review.’ Environmental and Experimental Botany pp. 28–34.
    Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S. and Odén, P. C. (2019) ‘Progresses in restoration of post-mining landscape in Africa.’ Journal of Forestry Research, 30(2) pp. 381–396.
    Filella and May (2003) ‘Computer simulation of the low-molecular-weight inorganic species distribution of antimony (III) and antimony (V) in natural waters.’ Geochimica et Cosmochimica Acta, 67(21) pp. 4013–4031.
    Filella, M. (2013) ‘Food for thought: A critical overview of current practical and conceptual challenges in trace element analysis in natural waters.’ Water (Switzerland). MDPI AG pp. 1152–1171.
    Filella, M. and and May, P. M. (2005a) ‘Critical appraisal of available thermodynamic data for the complexation of antimony(III) and antimony(V) by low molecular mass organic ligands.’ Journal of environmental monitoring : JEM, 7(12) pp. 1226–1237.
    Filella, M. and and May, P. M. (2005b) ‘Reflections on the calculation and publication of potentiometrically- determined formation constants.’ Talanta, 65(5) pp. 1221–1225.
    Filella, M., Belzile, N. and Chen, Y.-W. (2002a) ‘Antimony in the environment: a review focused on natural waters.’ Earth-Science Reviews, 57(1–2) pp. 125–176.
    Filella, M., Belzile, N. and Chen, Y.-W. (2002b) ‘Antimony in the environment: a review focused on natural waters.’ Earth-Science Reviews, 59(1–4) pp. 265–285.
    Filella, M., Belzile, N. and Chen, Y.-W. (2002c) ‘Antimony in the environment: a review focused on natural waters.’ Earth-Science Reviews, 59(1–4) pp. 265–285.
    Filella, M., Belzile, N. and Chen, Y. W. (2002) ‘Antimony in the environment: A review focused on natural waters I. Occurence.’ Earth-Science Reviews, 57(1–2) pp. 125–176.
    Filella, M., Belzile, N. and Lett, M. C. (2007) ‘Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions.’ Earth-Science Reviews, 80(3–4) pp. 195–217.
    Filella, M. and Williams, P. A. (2012) ‘Antimony interactions with heterogeneous complexants in waters, sediments and soils: A review of binding data for homologous compounds.’ Chemie der Erde. Elsevier GmbH., 72(SUPPL.4) pp. 49–65.
    Filella, M., Williams, P. A. and Belzile, N. (2009) ‘Antimony in the environment: Knowns and unknowns.’ Environmental Chemistry, 6(2) pp. 95–105.
    Forsberg, G., O’Laughlin, J. W., Megargle, R. G. and Koirtyohann, S. R. (1975) ‘Determination of Arsenic by Anodic Stripping Voltammetry and Differential Pulse Anodic Stripping Voltammetry.’ Analytical Chemistry, 47(9) pp. 1586–1592.
    Francesconi, Kevin A. and Kuehnelt, D. (2004) ‘Determination of arsenic species : A critical review of methods and applications , 2000 – 2003.’ Analyst. Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, 8010 Graz, Austria., 129(5) pp. 373–395.
    Francesconi, Kevin A and Kuehnelt, D. (2004) ‘Determination of arsenic species : A critical review of methods and applications , 2000 – 2003’ pp. 373–395.
    Frantz, J. M. and Epstein, E. (2005) NUTRITIONAL DEFICIENCIES: WHAT THEY LOOK LIKE.
    FSA (2012) Arsenic speciation in fruit and vegetables grown in the UK. july 2012. Aberdeen: University of Aberdeen.
    Fu, Z., Wu, F., Mo, C., Deng, Q., Meng, W. and Giesy, J. P. (2016) ‘Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China.’ Science of the Total Environment, 539 pp. 97–104.
    G. Pepponi, F. Meirer, C. Streli, P. Wobrauschek, V.G. Mihucz, G. Zaray, V. Czech, J. Broekaert, U. F. and G. F. (n.d.) ‘ARSENIC SPECIATION IN CUCUMBER (Cucumis sativus L.) XYLEM SAP BY K-EDGE TXRF-XANES.’ p. 38050.
    Garg, N. and Singla, P. (2011) ‘Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms.’ Environmental Chemistry Letters. Springer pp. 303–321.
    Garg, N., Singla, P. and Bhandari, P. (2015) ‘Metal uptake, oxidative metabolism, and mycorrhization in pigeonpea and pea under arsenic and cadmium stress.’ Turkish Journal of Agriculture and Forestry. Turkiye Klinikleri Journal of Medical Sciences, 39(2) pp. 234–250.
    Gebel, T. (1997) ‘Aresnic and antimony: Comparative approach on mechanistic toxicology.’ Chemico-Biological Interactions. Elsevier Ireland Ltd, 107(3) pp. 131–144.
    Gebel, T. W. (2001) ‘Unanswered questions in arsenic toxicology.’ In Journal of Environmental Pathology, Toxicology and Oncology, pp. 299–309.
    Gemici, Ü. and Tarcan, G. (2007) ‘Assessment of the pollutants in farming soils and waters around untreated abandoned Türkönü mercury mine (Turkey).’ Bulletin of Environmental Contamination and Toxicology, 79(1) pp. 20–24.
    Geng, A., Wang, X., Wu, L., Wang, F., Chen, Y., Yang, H., Zhang, Z. and Zhao, X. (2017) ‘Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil.’ Ecotoxicology and Environmental Safety, 137 pp. 172–178.
    Geng, C. N., Zhu, Y. G., Tong, Y. P., Smith, S. E. and Smith, F. A. (2006) ‘Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.).’ Chemosphere, 62(4) pp. 608–615.
    Gerényi, A., Czech, V., Fodor, F., Vincze, L. and Szalóki, I. (2017) ‘In vivo XANES measuring technique for studying the arsenic uptake in cucumber plants.’ X-Ray Spectrometry, 46(3) pp. 143–150.
    Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V. and Ozturk, M. (2019) ‘Heavy metal stress and responses in plants.’ International Journal of Environmental Science and Technology. Center for Environmental and Energy Research and Studies pp. 1807–1828.
    Gibbon-Walsh, K., Salaün, P. and Van Den Berg, C. M. G. (2012) ‘Pseudopolarography of copper complexes in seawater using a vibrating gold microwire electrode.’ Journal of Physical Chemistry A, 116(25) pp. 6609–6620.
    Gibbon-Walsh, K., Salaün, P., Uroic, M. K., Feldmann, J., McArthur, J. M. and Van Den Berg, C. M. G. (2011) ‘Voltammetric determination of arsenic in high iron and manganese groundwaters.’ Talanta, 85(3) pp. 1404–1411.
    Gidlow, D. A. (2004) ‘Lead toxicity.’ Occupational Medicine pp. 76–81.
    Grace Analytical lab (1995) Standard Operating Procedure for Chlorophyll-a and Pheophytin-a (Turner Designs Method).
    Grob, M., Wilcke, W. and Mestrot, A. (2018) ‘Release and Biomethylation of Antimony in Shooting Range Soils upon Flooding.’ Soil Systems, 2(2) p. 34.
    Guerriero, G. D. R. T. D. K. and (2020) Metalloids in Plants: Advances and Future Prospects. John Wiley & Sons.
    Gupta, D. K., Srivastava, S., Huang, H. G., Romero-Puertas, M. C. and Sandalio, L. M. (2011) ‘Arsenic Tolerance and Detoxification Mechanisms in Plants.’ In, pp. 169–179.
    Hakeem, K. R. (2015) ‘Crop production and global environmental issues.’ Crop Production and Global Environmental Issues, (December) pp. 1–598.
    Hall, J. L. (2002) ‘Cellular mechanisms for heavy metal detoxification and tolerance.’ Journal of Experimental Botany, 53(366) pp. 1–11.
    Hall, J L (2002) ‘Cellular mechanisms for heavy metal detoxification and tolerance.’ Journal of Experimental Botany pp. 1–11.
    Hammel, W., Debus, R. and Steubing, L. (2000) ‘Mobility of antimony in soil and its availability to plants.’ Chemosphere, 41(11) pp. 1791–1798.
    Hansen, C. (2011a) Antimony speciation analysis HPLC methods with ICP-MS and ES-MS detection for complex biological matrices. Department of Pharmaceutics and Analytical Chemistry. U N IV E R S I T Y O F C O P E N H A G E N.
    Hansen, C. (2011b) PhD thesis Antimony speciation analysis.
    Hansen, H. R. and Pergantis, S. A. (2008) ‘Analytical techniques and methods used for antimony speciation analysis in biological matrices.’ Journal of Analytical Atomic Spectrometry, 23(10) pp. 1328–1340.
    Hansen, Helle Rüsz and Pergantis, S. A. (2008) ‘Analytical techniques and methods used for antimony speciation analysis in biological matrices.’ Journal of Analytical Atomic Spectrometry, 23(10) pp. 1328–1340.
    Hasanuzzaman, M., Nahar, K., Hakeem, K. R., Öztürk, M. and Fujita, M. (2014) ‘Arsenic Toxicity in Plants and Possible Remediation.’ In Soil Remediation and Plants: Prospects and Challenges, pp. 433–501.
    Hawkesford, M. J., Parmar, S. and Buchner, P. (2013) Plant Mineral Nutrients. Methods in Molecular Biology.
    Hazama, K., Nagata, S., Fujimori, T., Yanagisawa, S. and Yoneyama, T. (2015) ‘Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium.’ Physiologia Plantarum, 154(2) pp. 243–255.
    He, M., Wang, N., Long, X., Zhang, C., Ma, C., Zhong, Q., Wang, A., Wang, Y., Pervaiz, A. and Shan, J. (2019) ‘Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects.’ Journal of Environmental Sciences (China). Elsevier B.V., 75 pp. 14–39.
    Hettick, B. E., Cañas-Carrell, J. E., French, A. D. and Klein, D. M. (2015a) ‘Arsenic: A Review of the Element’s Toxicity, Plant Interactions, and Potential Methods of Remediation.’ Journal of Agricultural and Food Chemistry, 63(32) pp. 7097–7107.
    Hettick, B. E., Cañas-Carrell, J. E., French, A. D. and Klein, D. M. (2015b) ‘Arsenic: A Review of the Element’s Toxicity, Plant Interactions, and Potential Methods of Remediation.’ Journal of Agricultural and Food Chemistry, 63(32) pp. 7097–7107.
    Hijaz, F. and Killiny, N. (2014) ‘Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange).’ PLoS ONE. Public Library of Science, 9(7).
    Hirner, A. V., Grüter, U. M. and Kresimon, J. (2000) ‘Metal(loid)organic compounds in contaminated soil.’ Fresenius’ Journal of Analytical Chemistry. Springer, 368(2–3) pp. 263–267.
    Hoagland and Arnon, D., D. (1950) The water-culture method of growing plants without soil. Berkeley, Calif. : University of California, College of Agriculture, Agricultural Experiment Station.
    Hossain, M. A., Piyatida, P., da Silva, J. A. T. and Fujita, M. (2012) ‘Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation.’ Journal of Botany. Hindawi Limited, 2012, April, pp. 1–37.
    Hozhina, E. I., Khramov, A. A., Gerasimov, P. A. and Kumarkov, A. A. (2001) ‘Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries.’ Journal of Geochemical Exploration, 74(1–3) pp. 153–162.
    Hrytsak, L. R., Herts, A. I., Nuzhyna, N. V., Cryk, M. M., Shevchenko, V. V. and Drobyk, N. M. (2018) ‘The influence of light regime on the growth data and pigment composition of the plant Gentiana lutea cultured in vitro.’ Regulatory Mechanisms in Biosystems, 9(2) pp. 258–266.
    Hu, L., Zhang, B., Wu, D., Fan, H., Tu, J., Liu, W., Huang, R. and Huang, X. (2019) ‘Estimation of arsenic bioaccessibility in raw and cooked radish using simulated: In vitro digestion.’ Food and Function. Royal Society of Chemistry, 10(3) pp. 1426–1432.
    Hu, Y., Cheng, H. and Tao, S. (2016) ‘The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review.’ Environment International. Elsevier Ltd pp. 515–532.
    Hua, C. Y., Chen, J. X., Cao, Y., Li, H. B., Chen, Y. and Ma, L. Q. (2020) ‘Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil.’ Chemosphere. Elsevier Ltd, 247, May.
    Huang, R. Q., Gao, S. F., Wang, W. L., Staunton, S. and Wang, G. (2006) ‘Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China.’ Science of the Total Environment, 368(2–3) pp. 531–541.
    Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X. and He, Z. (2018) ‘Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China.’ Journal of Environmental Management. Academic Press, 207, February, pp. 159–168.
    Huang, Z., Pan, X. D., Wu, P. G., Han, J. L. and Chen, Q. (2013) ‘Health Risk Assessment of Heavy Metals in Rice to the Population in Zhejiang, China.’ PLoS ONE, 8(9) pp. 1–6.
    Huiliang, H., Jagner, D. and Renman, L. (1988) ‘Flow potentiometric and constant-current stripping analysis for arsenic(V) without prior chemical reduction to arsenic(III).’ Analytica Chimica Acta, 207 pp. 37–46.
    Humphrey, O. S., Young, S. D., Bailey, E. H., Crout, N. M. J., Ander, E. L., Hamilton, E. M. and Watts, M. J. (2019) ‘Investigating the use of microdialysis and SEC-UV-ICP-MS to assess iodine interactions in soil solution.’ Chemosphere. Elsevier Ltd, 229, August, pp. 41–50.
    Hunt, R., Causton, D. R., Shipley, B. and Askew, A. P. (2002) ‘A Modern Tool for Classical Plant Growth Analysis.’ Annals of Botany, 90(4) pp. 485–488.
    Inselsbacher, E. (2014) ‘Recovery of individual soil nitrogen forms after sieving and extraction.’ Soil Biology and Biochemistry.
    Inselsbacher, E., Öhlund, J., Jämtgård, S., Huss-Danell, Kerstin, A. and Näsholm, T. (2011) ‘The potential of microdialysis to monitor organic and inorganic nitrogen compounds in soil.’ Soil Biology and Biochemistry, 43(6) pp. 1321–1332.
    International programme on chemical safety (2004) ‘International programme on chemical safety (ipcs),’ (June) pp. 1–34.
    IPNI (2002) ‘Nutrient Deficiency Symptoms in Rice.’ Better Crops International, 16(May) pp. 23–25.
    IRRI and DFID (2009) ‘Scuba rice : breeding flood-tolerance into Asia ’ s local mega rice varieties.’ South Asia pp. 1–6.
    Ismail, B., Yap, D., Adezrian, J., Khairiah, J. and Ahmad-Mahir, R. (2009) ‘The Uptake of Heavy Metals by Paddy Plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia.’ & Environ. Sci, 6(1) pp. 16–19.
    Jamila Alfaraas, A. M., Khairiah, J., Ismail, B. S. and Noraini, T. (2016) ‘Effects of heavy metal exposure on the morphological and microscopical characteristics of the paddy plant.’ Journal of Environmental Biology, 37(5) pp. 955–963.
    Järup, L. (2003) ‘Hazards of heavy metal contamination.’ British Medical Bulletin, 68 pp. 167–182.
    JECFA (2016) ‘Joint FAO / WHO Expert Committee on Food Additives ( JECFA ) Call for Experts on Food Additives , Contaminants and toxins ; and Residues of Veterinary Drugs,’ (October).
    Jentschke, G. and Godbold, D. L. (2000) ‘Metal toxicity and ectomycorrhizas.’ Physiologia Plantarum, 109(2) pp. 107–116.
    Ji, Y., Sarret, G., Schulin, R. and Tandy, S. (2017) ‘Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy.’ Environmental Pollution. Elsevier Ltd, 231, December, pp. 1322–1329.
    Johnson, C. A., Moench, H., Wersin, P., Kugler, P. and Wenger, C. (2005) ‘Solubility of Antimony and Other Elements in Samples Taken from Shooting Ranges.’ Journal of Environmental Quality. Wiley, 34(1) pp. 248–254.
    Johnson, C. D. (2014) ‘Phytoremediation of Arsenic Contamination on Vashon-Maury Island METHODS Salix Screening for Arsenic Tolerance’ p. 2014.
    Johnston, A. E. and Poulton, P. R. (2018) ‘The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience.’ European Journal of Soil Science, 69(1) pp. 113–125.
    Kabata-Pendias, A. (2010) Trace elements in soils and plants: Fourth edition. Trace Elements in Soils and Plants, Fourth Edition. CRC Press.
    Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V. and Ladle, R. J. (2016) ‘Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.’ Acta Physiologiae Plantarum. Polish Academy of Sciences.
    Kapaj, S., Peterson, H., Liber, K. and and Bhattacharya, P. (2006) ‘Human health effects from chronic arsenic poisoning - A review.’ Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. The Safe Drinking Water Foundation, Saskatoon, Saskatchewan, Canada., 41(10) pp. 2399–2428.
    Katsounaros, I. and Kyriacou, G. (2007) ‘Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode.’ Electrochimica Acta, 52(23) pp. 6412–6420.
    Kehr, J. and Rep, M. (2007) ‘Protein extraction from xylem and phloem sap.’ Methods in molecular biology (Clifton, N.J.), 355 pp. 27–35.
    Killiny, N. and Hijaz, F. (1998) ‘Chemical composition of xylem sap of Citrus sinensis L. Osbeck (sweet orange).’ Trends in Plant Science, 3(5) pp. 188–195.
    Kisan, M., Sangathan, S., Nehru, J. and Pitroda, S. G. (2012) ‘Laboratory Glassware-Volumetric Instruments-Methods for Testing of Capacity and for Use.’ ISO (ed.) 4787. Geneva: IS pp. 1–29.
    Kitagishi, K. (1981) ‘Heavy Metal Pollution in Soils of Japan.’ Japan Scientific Societies Press, Tokyo, Japan, 52(4) p. 302.
    Koester, R. P., Skoneczka, J. A., Cary, T. R., Diers, B. W. and Ainsworth, E. A. (2014) ‘Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.’ Journal of Experimental Botany, 65(12) pp. 3311–3321.
    Kolbe, F., Mattusch, J., Wennrich, R., Weiss, H., Sorkau, E., Lorenz, W. and Daus, B. (2012) ‘Analytical investigations of antimony-edta complexes and their use in speciation analysis.’ Fresenius Environmental Bulletin, 21(11 C) pp. 3453–3456.
    Kowalska, J., Stryjewska, E., Szymański, P. and Golimowski, J. (1999) ‘Voltammetric determination of arsenic in plant material.’ Electroanalysis, 11(17) pp. 1301–1304.
    Krachler, M. and Emons, H. (2001) ‘Speciation analysis of antimony by high-performance liquid chromatography inductively coupled plasma mass spectrometry using ultrasonic nebulization.’ Analytica Chimica Acta, 429(1) pp. 125–133.
    Kroukamp, E. M., Wondimu, T. and Forbes, P. B. C. (2016) ‘Metal and metalloid speciation in plants: Overview, instrumentation, approaches and commonly assessed elements.’ TrAC - Trends in Analytical Chemistry. Elsevier B.V., 77 pp. 87–99.
    Krupka, K. M. and Serne, R. J. (2002) Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments.
    Kumar, R., Mishra, R. K., Mishra, V., Qidwai, A., Pandey, A., Shukla, S. K., Pandey, M., Pathak, A. and Dikshit, A. (2015) ‘Detoxification and Tolerance of Heavy Metals in Plants.’ In Plant Metal Interaction: Emerging Remediation Techniques. Elsevier Inc., pp. 335–359.
    Kumarathilaka, P., Seneweera, S., Meharg, A. and Bundschuh, J. (2018) ‘Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - A review.’ Water Research pp. 403–414.
    Küpper, H. and Andresen, E. (2016) ‘Mechanisms of metal toxicity in plants.’ Metallomics pp. 269–285.
    Lansdown, A. B. G. (2013) ‘CHAPTER 1. Introduction.’ In The Carcinogenicity of Metals: Human Risk Through Occupational and Environmental Exposure, pp. 1–18.
    Larsen, E. H. and Stürup, S. (1994) ‘Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation.’ Journal of Analytical Atomic Spectrometry, 9(10) pp. 1099–1105.
    Van Leeuwen, H. P., Town, R. M., Buffle, J., Cleven, R. F. M. J., Davison, W., Puy, J., Van Riemsdijk, W. H. and Sigg, L. (2005) ‘Dynamic speciation analysis and bioavailability of metals in aquatic systems.’ Environmental Science and Technology, 39(22) pp. 8545–8556.
    van Leeuwen, L. C. and Vonk, J. W. (2012) ‘Environmental risk limits for antimony’ pp. 1–34.
    Li, Z. and Cui, Z. (2008a) ‘Application of microdialysis in tissue engineering monitoring.’ Progress in Natural Science, 18(5) pp. 503–511.
    Li, Z. and Cui, Z. (2008b) ‘Application of microdialysis in tissue engineering monitoring.’ Progress in Natural Science. Science Press pp. 503–511.
    Liang, G., Gong, W., Li, B., Zuo, J., Pan, L. and Liu, X. (2019) ‘Analysis of heavy metals in foodstuffs and an assessment of the health risks to the general public via consumption in beijing, China.’ International Journal of Environmental Research and Public Health. MDPI AG, 16(6).
    Lichtfouse, E., Schwarzbauer, J. and Robert, D. (2012) Environmental chemistry for a sustainable world. Environmental Chemistry for a Sustainable World. Springer Netherlands.
    Lintschinger, J., Koch, I., Serves, S., Feldmann, J. and Cullen, W. R. (1997) ‘Determination of antimony species with High-Performance Liquid Chromatography using element specific detection.’ Fresenius’ Journal of Analytical Chemistry, 359(6) pp. 484–491.
    Liu, Z. G. and Huang, X. J. (2014) ‘Voltammetric determination of inorganic arsenic.’ TrAC - Trends in Analytical Chemistry, 60 pp. 25–35.
    Lombi, E. and Holm, P. E. (2010a) ‘Metalloids, soil chemistry and the environment.’ In Advances in Experimental Medicine and Biology. Australia: Landes Bioscience and Springer Science+Business Media., pp. 33–44.
    Lombi, E. and Holm, P. E. (2010b) ‘Metalloids, Soil Chemistry and the Environment.’ In Advances in Experimental Medicine and Biology, pp. 33–44.
    Louis, Y., Cmuk, P., Nicolau, R., Omanovi, D., Lenoble, V., Pižeta, I., Mounier, S. and Garde, L. (2007) ‘Pseudopolarography As a Tool for Complexation Studies of Trace Metals With Dissolved Natural Organic Matter,’ (January) p. 2007.
    Louis, Y., Cmuk, P., Omanović, D., Garnier, C., Lenoble, V., Mounier, S. and Pižeta, I. (2008) ‘Speciation of trace metals in natural waters: The influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper.’ Analytica Chimica Acta. Elsevier Masson, 606(1) pp. 37–44.
    Louis, Y., Garnier, C., Lenoble, V., Omanovi, D., Mounier, S., Pižeta, I., Protee, L., Toulon, S., Bp, V., Garde, L., Physico, G. De, Chimie, T., Moléculaires, S. and I, U. B. (2008) ‘Electrochemical Study of Major and Trace Metal Interactions With Concentrated Marine Dissolved Organic Matter,’ (098) p. 1214910.
    Lu, M. and Compton, R. G. (2013) ‘Voltammetric Determination of Iron(III) in Water.’ Electroanalysis, 25(5) pp. 1123–1129.
    Lubin, J. H., Moore, L. E., Fraumeni, J. F. and Cantor, K. P. (2008) ‘Respiratory Cancer and inhaled inorganic Arsenic in copper smeltere workers: A linear relationship with cumulative exposure that increases with concentration.’ Environmental Health Perspectives, 116(12) pp. 1661–1665.
    Luo, J. and Shu, W. (2015) Arsenic-Induced Developmental Neurotoxicity. Handbook of Arsenic Toxicology. Elsevier Inc.
    Lydic, R., Baghdoyan, H. A. and May, A. L. (2018a) ‘Neurochemistry of Anesthetic States.’ In Methods in Enzymology. Academic Press Inc., pp. 237–255.
    Lydic, R., Baghdoyan, H. A. and May, A. L. (2018b) Neurochemistry of Anesthetic States. Methods in Enzymology. 1st ed., Elsevier Inc.
    Madejón, P., Marañón, T. and Murillo, J. M. (2006) ‘Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees.’ Science of the Total Environment, 355(1–3) pp. 187–203.
    Mandal, B. K. and Suzuki, K. T. (2002a) ‘Arsenic round the world: A review.’ Talanta, 58(1) pp. 201–235.
    Mandal, B. K. and Suzuki, K. T. (2002b) ‘Arsenic round the world: A review.’ Talanta. Elsevier pp. 201–235.
    Marconi, E., Canepari, S., Luisa Astolfi, M. and Perrino, C. (2011) ‘Determination of Sb(III), Sb(V) and identification of Sb-containing nanoparticles in airborne particulate matter.’ Procedia Environmental Sciences, 4 pp. 209–217.
    Mareček, V., Jänchenová, H., Samec, Z. and Březina, M. (1986) ‘Voltammetric determination of nitrate, perchlorate and iodide at a hanging electrolyte drop electrode.’ Analytica Chimica Acta, 185(C) pp. 359–362.
    Marschner, H. (1995) Mineral Nutrition of High Plants. Academic Press.
    Martin, M., Ferdousi, R., Hossain, K. M. J. and Barberis, E. (2010) ‘Arsenic from groundwater to paddy fields in Bangladesh: Solid-liquid partition, sorption and mobility.’ Water, Air, and Soil Pollution, 212(1–4) pp. 27–36.
    Martinez, R. E., Marquez, J. E., Hòa, H. T. B. and Gieré, R. (2013) ‘Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.’ Environmental Science and Pollution Research, 20(11) pp. 7686–7698.
    Massoura, S. T., Echevarria, G., Leclerc-Cessac, E. and Morel, J. L. (2004) ‘Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils.’ Australian Journal of Soil Research, 42(8) pp. 933–938.
    Materials, B. (1989) ‘7 . ANALYTICAL METHODS,’ (Who 1981) pp. 383–394.
    Matschullat, J. (2000) ‘Arsenic in the geosphere - A review.’ Science of the Total Environment, 249(1–3) pp. 297–312.
    Mayet, N., Servat, K., Kokoh, K. B. and Napporn, T. W. (2019) ‘Probing the Surface of Noble Metals Electrochemically by Underpotential Deposition of Transition Metals.’ Surfaces, 2(2) pp. 257–276.
    McLaughlin, M. J., Parker, D. R. and Clarke, J. M. (1999) ‘Metals and micronutrients - Food safety issues.’ Field Crops Research, 60(1–2) pp. 143–163.
    Mead, M. N. (2005) ‘Arsenic: In search of an antidote to a global poison.’ Environmental Health Perspectives. Public Health Services, US Dept of Health and Human Services, 113(6).
    Meadows, R. (2014) ‘How Plants Control Arsenic Accumulation.’ PLoS Biology, 12(12) pp. 1002008–1002009.
    Meharg, A. A. (2004) ‘Arsenic in rice - Understanding a new disaster for South-East Asia.’ Trends in Plant Science pp. 415–417.
    Meharg, A. A. and Zhao, F.-J. (2012) Arsenic & Rice. Arsenic & Rice. Dordrecht: Springer Netherlands.
    Mendoza, T. (2012) ‘Estimates of Rice Per Capita Consumption: Its Implications to the Rice Self-Sufficiency Program of the Philippines*.’ P0ICY 0PTI0NS, 4, January.
    Mestrot, A., Ji, Y., Tandy, S. and Wilcke, W. (2016) ‘A novel method to determine trimethylantimony concentrations in plant tissue.’ Environmental Chemistry, 13(6) pp. 919–926.
    Michalski, R., Szopa, S., Jabłońska, M. and Łyko, A. (2012) ‘Application of hyphenated techniques in speciation analysis of arsenic, antimony, and thallium.’ The Scientific World Journal. Institute of Environmental Engineering, the Polish Academy of Sciences, 34 Sklodowskiej-Curie Street, 41 819 Zabrze, Poland. michalski@ipis.zabrze.pl, 2012(January 2017) p. 902464.
    Miekeley, N., Mortari, S. R. and Schubach, A. O. (2002) ‘Monitoring of total antimony and its species by ICP-MS and on-line ion chromatography in biological samples from patients treated for leishmaniasis.’ Fresenius’ Journal of Analytical Chemistry, 372(3) pp. 495–502.
    Mihucz, V. G., Tatár, E., Virág, I., Cseh, E., Fodor, F. and Záray, G. (2005) ‘Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.).’ Analytical and Bioanalytical Chemistry, 383(3) pp. 461–466.
    Mihucz, V. G., Varga, A. and Za, G. (1998) ‘Determination of Organic Acids in Xylem Sap of Cucumber : Effect of Lead Contamination,’ 314(58) pp. 306–314.
    Ministerie Van Volkshuisvesting; Ruimtelijke Ordening En Milieu (2000) ‘Dutch Target and Intervention Values; 2000 (the New Dutch List).’ Netherlands Government Gazette, 2000 pp. 1–12.
    Miró, M., Fitz, W. J., Swoboda, S. and Wenzel, W. W. (2010) ‘In-situ sampling of soil pore water: Evaluation of linear-type microdialysis probes and suction cups at varied moisture contents.’ Environmental Chemistry, 7(1) pp. 123–131.
    Mishra, S., Srivastava, S., Dwivedi, S. and Tripathi, R. D. (2013) ‘Investigation of biochemical responses of Bacopa monnieri L. upon exposure to arsenate.’ Environmental Toxicology, 28(8) pp. 419–430.
    Mohan, D. and Pittman, C. U. (2007) ‘Arsenic removal from water/wastewater using adsorbents-A critical review.’ Journal of Hazardous Materials pp. 1–53.
    Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., Pitman, A., Hemmings, F. A. and Leishman, M. R. (2009) ‘Global patterns in plant height.’ Journal of Ecology, 97(5) pp. 923–932.
    Moreno-Jiménez, E., Esteban, E. and Peñalosa, J. M. (2012) ‘The fate of arsenic in soil-plant systems.’ Reviews of Environmental Contamination and Toxicology, 215 pp. 1–37.
    Morua, M. (2015) ‘Investigating various xylem sap extraction techniques from drought- stressed Geijera parviflora trees’ pp. 1–26.
    Mosetlha, K., Torto, N. and Wibetoe, G. (2007a) ‘Determination of Cu and Ni in plants by microdialysis sampling: Comparison of dialyzable metal fractions with total metal content.’ Talanta. Elsevier, 71(2) pp. 766–770.
    Mosetlha, K., Torto, N. and Wibetoe, G. (2007b) ‘Determination of Cu and Ni in plants by microdialysis sampling: Comparison of dialyzable metal fractions with total metal content.’ Talanta, 71(2) pp. 766–770.
    Nagajyoti, P. C., Lee, K. D. and Sreekanth, T. V. M. (2010) ‘Heavy metals, occurrence and toxicity for plants: A review.’ Environmental Chemistry Letters pp. 199–216.
    Nahar M., M. H. K. and F. (2018) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Mechanisms of Arsenic Toxicity and Tolerance in Plants. Singapore: Springer Nature Singapore Pte Ltd.
    Nash, Martin J, Maskall, J. E. and Hill, S. J. (2000) ‘Critical Review Methodologies for determination of antimony in terrestrial environmental samples.’
    Nash, M. J., Maskall, J. E. and Hill, S. J. (2000) ‘Methodologies for determination of antimony in terrestrial environmental samples.’ Journal of Environmental Monitoring, 2(2) pp. 97–109.
    Natasha, Shahid, M., Khalid, S., Dumat, C., Pierart, A. and Niazi, N. K. (2019) ‘Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health.’ Applied Geochemistry. Elsevier Ltd, 106, July, pp. 45–59.
    Netting, A. G., Theobald, J. C. and Dodd, I. C. (2012) ‘Xylem sap collection and extraction methodologies to determine in vivo concentrations of ABA and its bound forms by gas chromatography-mass spectrometry (GC-MS).’ Plant Methods, 8(1) pp. 1–14.
    Nicolau, R., Louis, Y., Omanović, D., Garnier, C., Mounier, S. and and, Pižeta, I. (2008) ‘Study of interactions of concentrated marine dissolved organic matter with copper and zinc by pseudopolarography.’ Analytica Chimica Acta, 618(1) pp. 35–42.
    Niedzielski, P. and Siepak, M. (2003) ‘Analytical methods for determining arsenic, antimony and selenium in environmental samples.’ Polish Journal of Environmental Studies, 12(6) pp. 653–667.
    Niedzielski, P., Siepak, M., Siepak, J. and Przybyłek, J. (2002) ‘Determination of Different Forms of Arsenic, Antimony and Selenium in Water Samples Using Hydride Generation.’ Polish Journal of Environmental Studies, 11(3) pp. 219–224.
    Nimick, D. A. (1998) ‘Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation.’ Ground Water. Ground Water Publ Co, 36(5) pp. 743–753.
    O’Day, P. A. (2006) ‘Chemistry and mineralogy of arsenic.’ Elements, 2(2) pp. 77–83.
    Obiora, S. C., Chukwu, A. and Davies, T. C. (2016) ‘Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria.’ Journal of African Earth Sciences. Elsevier Ltd, 116, April, pp. 182–189.
    Oda, A., Shimizu, M., Kuroha, T. and Satoh, S. (2005) ‘Induction of xylem sap methylglycine by a drought and rewatering treatment and its inhibitory effects on the growth and development of plant organs.’ Physiologia Plantarum, 124(4) pp. 515–523.
    Ogawa, K. and Iwabuchi, M. (2001) ‘A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide.’ Plant and Cell Physiology, 42(3) pp. 286–291.
    Ohmori, T., El-Deab, M. S. and Osawa, M. (1999a) ‘Electroreduction of nitrate ion to nitrite and ammonia on a gold electrode in acidic and basic sodium and cesium nitrate solutions.’ Journal of Electroanalytical Chemistry, 470(1) pp. 46–52.
    Ohmori, T., El-Deab, M. S. and Osawa, M. (1999b) ‘Electroreduction of nitrate ion to nitrite and ammonia on a gold electrode in acidic and basic sodium and cesium nitrate solutions.’ Journal of Electroanalytical Chemistry, 470(1) pp. 46–52.
    Olsen, S.R., C.V. Cole, F.S. Watanabe, and L. A. D. (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ.No. 939. U.S. Gov. Print. Office, Washington DC.
    Omanović, D. (2006) ‘Pseudopolarography of trace metals. Part III. Determination of stability constants of labile metal complexes.’ Croatica Chemica Acta, 79(1) p. 67.
    Omanović, D. and Branica, M. (2003) ‘Pseudopolarography of trace metals: Part I. The automatic ASV measurements of reversible electrode reactions.’ Journal of Electroanalytical Chemistry, 543(1) pp. 83–92.
    Omanović, D. and Branica, M. (2004) ‘Pseudopolarography of trace metals. Part II. The comparison of the reversible, quasireversible and irreversible electrode reactions.’ Journal of Electroanalytical Chemistry, 565(1) pp. 37–48.
    Onofri, A., Seddaiu, G. and Piepho, H. P. (2016) ‘Long-Term Experiments with cropping systems: Case studies on data analysis.’ European Journal of Agronomy.
    Özer, U. Y. and Bogucki, R. F. (1971) ‘Equilibrium studies of antimony(III) chelates in aqueous solution.’ Journal of Inorganic and Nuclear Chemistry, 33(12) pp. 4143–4153.
    Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J. C., Arellano-Mendoza, M. G., Tamay-Cach, F., Valenzuela-Limón, O. L., García-Montalvo, E. A. and Hernández-Zavala, A. (2019) ‘Arsenic exposure: A public health problem leading to several cancers.’ Regulatory toxicology and pharmacology : RTP p. 104539.
    Pampolino, M. F., Laureles, E. V., Gines, H. C. and Buresh, R. J. (2008) ‘Soil carbon and nitrogen changes in long-term continuous lowland rice cropping.’ Soil Science Society of America Journal, 72(3) pp. 798–807.
    Panda, S. K., Upadhyay, R. K. and Nath, S. (2010) ‘Arsenic Stress in Plants.’ Journal of Agronomy and Crop Science, 196(3) pp. 161–174.
    Pandey, P. and Tripathi, A. K. (2014) ‘IMPACT OF HEAVY METALS ON MORPHOLOGICAL AND BIOCHEMICAL PARAMETERS OF Shorea robusta PLANT,’ 33(2) pp. 116–126.
    Passioura, J. B. (1980) ‘The transport of water from soil to shoot in wheat seedlings.’ Journal of Experimental Botany, 31(1) pp. 333–345.
    Pedron, T., Segura, F. R., Paniz, F. P., de Moura Souza, F., dos Santos, M. C., de Magalhães Júnior, A. M. and Batista, B. L. (2019) ‘Mitigation of arsenic in rice grains by polishing and washing: Evidencing the benefit and the cost.’ Journal of Cereal Science. Academic Press, 87, May, pp. 52–58.
    Penezić, A., Tercier-Waeber, M. Lou, Abdou, M., Bossy, C., Dutruch, L., Bakker, E. and Schäfer, J. (2020) ‘Spatial variability of arsenic speciation in the Gironde Estuary: Emphasis on dynamic (potentially bioavailable) inorganic arsenite and arsenate fractions.’ Marine Chemistry. Elsevier, 223(December 2019) p. 103804.
    Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G. and Gardea-Torresdey, J. (2009) ‘The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain.’ International Journal of Biochemistry and Cell Biology, 41(8–9) pp. 1665–1677.
    Pettine, M., Casentini, B., Mastroianni, D. and Capri, S. (2007) ‘Dissolved inorganic carbon effect in the determination of arsenic and chromium in mineral waters by inductively coupled plasma-mass spectrometry.’ Analytica Chimica Acta. Elsevier, 599(2) pp. 191–198.
    Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., George, G. N. and Salt, D. E. (2000) ‘Reduction and coordination of arsenic in Indian mustard.’ Plant Physiology, 122(4) pp. 1171–1177.
    Pierart, A., Shahid, M., Séjalon-Delmas, N. and Dumat, C. (2015) ‘Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures.’ Journal of Hazardous Materials, 289, May, pp. 219–234.
    Pla-Vilanova, P., Galceran, J., Puy, J., Companys, E. and Filella, M. (2019) ‘Antimony speciation in aqueous solution followed with AGNES.’ Journal of Electroanalytical Chemistry. Elsevier B.V., 849 p. 113334.
    Pohl, P., Lesniewicz, A. and Zyrnicki, W. (2003) ‘Determination of As, Bi, Sb and Sn in Conifer Needles From Various Locations in Poland and Norway by Hydride Generation Inductively Coupled Plasma Atomic Emission Spectrometry.’ International Journal of Environmental Analytical Chemistry. Taylor & Francis Group , 83(11) pp. 963–970.
    Polunina, O. V., Maiboroda, V. P. and Seleznov, A. Y. (2018) ‘EVALUATION METHODS OF ESTIMATION OF YOUNG APPLE TREES LEAF AREA.’ Bulletin of Uman National University of Horticulture, (2) pp. 80–82.
    Porra, R. J. (2005) ‘Clorofila Porras 2005’ pp. 633–640.
    Postupolski, A. and Golimowski, J. (1991) ‘Trace determination of antimony and bismuth in snow and water samples by stripping voltammetry.’ Electroanalysis. UNIV WARSAW,DEPT CHEM,PASTEURA 1,PL-02093 WARSAW,POLAND., 3(8) pp. 793–797.
    Pretti, L., Bazzu, G., Serra, P. A. and Nieddu, G. (2013) ‘Analytical Methods A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis.’
    Pretti, L., Bazzu, G., Serra, P. A. and Nieddu, G. (2014) ‘A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis.’ Food Chemistry, 147 pp. 131–137.
    Punrat, E., Chuanuwatanakul, S., Kaneta, T., Motomizu, S. and Chailapakul, O. (2014) ‘Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode.’ Talanta. Elsevier B.V., 2013(June) pp. 1018–1025.
    Quentel, F. and Filella, M. (2002) ‘Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: Stability of the trivalent state.’ Analytica Chimica Acta, 452(2) pp. 237–244.
    Quentel, F., Filella, M., Elleouet, C. and Madec, C. (2006) ‘Sb(III) oxidation by iodate in seawater: A cautionary tale.’ Science of The Total Environment, 355(1–3) pp. 259–263.
    Quentel, F., FILELLA, M., ELLEOUET, C. and MADEC, C. (2006) ‘Sb(III) oxidation by iodate in seawater: A cautionary tale.’ Science of The Total Environment. Elsevier, 355(1–3) pp. 259–263.
    RA (2001) ‘Philippine Mining Act of 1995,.’ Philippines, R. of the (ed.) pp. 1–12.
    Raab, A., Feldmann, J. and Meharg, A. A. (2004) ‘The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica.’ Plant Physiology, 134(3) pp. 1113–1122.
    Raab, A., Meharg, Andrew A, Jaspars, M., Genney, D. R. and Feldmann, J. (2004) ‘Arsenic-glutathione complexes - Their stability in solution and during separation by different HPLC modes.’ Journal of Analytical Atomic Spectrometry, 19(1) pp. 183–190.
    Raab, A., Meharg, Andrew A., Jaspars, M., Genney, D. R. and Feldmann, J. (2004) ‘Arsenic–glutathione complexes—their stability in solution and during separation by different HPLC modes.’ J. Anal. At. Spectrom., 19(1) pp. 183–190.
    Raab, A., Schat, H., Meharg, A. A. and Feldmann, J. (2005) ‘Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): Formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations.’ New Phytologist, 168(3) pp. 551–558.
    Rahaman, M. S., Akter, M., Rahman, M. M., Sikder, M. T., Hosokawa, T., Saito, T. and Kurasaki, M. (2020) ‘Investigating the protective actions of D-pinitol against arsenic-induced toxicity in PC12 cells and the underlying mechanism.’ Environmental Toxicology and Pharmacology. Elsevier B.V., 74, February.
    Rahman, M. A. and Hasegawa, H. (2011) ‘High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking.’ Science of the Total Environment pp. 4645–4655.
    Raskin, I., Kumar, P. N., Dushenkov, S. and Salt, D. E. (1994) ‘Bioconcentration of heavy metals by plants.’ Current Opinion in Biotechnology, 5(3) pp. 285–290.
    Rauser, W. E. (1990) PHYTOCHELATINS 1.
    Rellán-Álvarez, R., El-Jendoubi, H., Wohlgemuth, G., Abadía, A., Fiehn, O., Abadía, J., Álvarez-Fernández, A., Schjoerring, J. K., Zocchi, G., Degli, U., Di Milano, S. and Yoshihara, T. (2011) ‘Metabolite profile changes in xylem sap and leaf extracts of strategy I plants in response to iron deficiency and resupply.’
    Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Campo, F. F. D. and Hernández, L. E. (2006) ‘Stress responses of Zea mays to cadmium and mercury.’ Plant and Soil, 279(1–2) pp. 41–50.
    Ren, J. H., Ma, L. Q., Sun, H. J., Cai, F. and Luo, J. (2014) ‘Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate.’ Science of the Total Environment. Elsevier B.V., 475 pp. 83–89.
    Rodriguez-Iruretagoiena, A., Trebolazabala, J., Martinez-Arkarazo, I., De Diego, A. and Madariaga, J. M. (2015) ‘Metals and metalloids in fruits of tomatoes (Solanum lycopersicum) and their cultivation soils in the Basque Country: Concentrations and accumulation trends.’ Food Chemistry. Elsevier Ltd, 173, February, pp. 1083–1089.
    Rosas-Castor, J. M., Guzmán-Mar, J. L., Hernández-Ramírez, A., Garza-González, M. T. and Hinojosa-Reyes, L. (2014) ‘Arsenic accumulation in maize crop (Zea mays): A review.’ Science of the Total Environment. Elsevier pp. 176–187.
    Rousk, J. and Jones, D. L. (2010) ‘Loss of low molecular weight dissolved organic carbon (DOC) and nitrogen (DON) in H2O and 0.5M K2SO4 soil extracts.’ Soil Biology and Biochemistry.
    Sabir, M., Waraich, E. A., Hakeem, K. R., Öztürk, M., Ahmad, H. R. and Shahid, M. (2015) ‘Phytoremediation: Mechanisms and Adaptations. Mechanisms and Adaptations.’ Soil Remediation and Plants: Prospects and Challenges pp. 85–105.
    Sadiq, M. (1992) Toxic metal chemistry in marine environments. Marcel Dekker. New York City.
    Salama, A. K. and Radwan, M. A. (2005) ‘Heavy metals (Cd,Pb) and trace elements (Cu,Zn) contents in some foodstuffs from the Egyptian market.’ Emirates Journal of Food and Agriculture, 17(1) pp. 34–42.
    Salaün, P. (2017) ‘Editorial: Environmental Electrochemistry.’ Current Opinion in Electrochemistry, pp. 75–77.
    Salaün, P. and Van Den Berg, C. M. G. G. (2006) ‘Voltammetric detection of mercury and copper in seawater using a gold microwire electrode.’ Analytical Chemistry, 78(14) pp. 5052–5060.
    Salaün, P. and Frézard, F. (2013) ‘Unexpectedly high levels of antimony (III) in the pentavalent antimonial drug Glucantime: Insights from a new voltammetric approach.’ Analytical and Bioanalytical Chemistry. School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK. pascal.salaun@liverpool.ac.uk, 405(15) pp. 5201–5214.
    Salaün, P., Gibbon-Walsh, K. B., Alves, G. M. S. S., Soares, H. M. V. M. V. M. and van den Berg, C. M. G. G. (2012) ‘Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode.’ Analytica Chimica Acta. School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP Liverpool, United Kingdom. salaun@liverpool.ac.uk: Elsevier B.V., 746(March 2014) pp. 53–62.
    Salaün, P., Gibbon-Walsh, K. B., Alves, G. M. S., Soares, H. M. V. M. and van den Berg, C. M. G. (2012) ‘Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode.’ Analytica Chimica Acta, 746, October, pp. 53–62.
    Salaün, P., Gibbon-Walsh, K. and Van Den Berg, C. M. G. (2011) ‘Beyond the hydrogen wave: New frontier in the detection of trace elements by stripping voltammetry.’ Analytical Chemistry, 83(10) pp. 3848–3856.
    Salaün, P., Planer-Friedrich, B. and van den Berg, C. M. . (2007) ‘Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode.’ Analytica Chimica Acta. University of Liverpool, Department of Earth and Ocean Sciences, Liverpool L69 3GP, United Kingdom., 585(2) pp. 312–322.
    Samarah, L. Z., Tran, T. H., Stacey, G. and Vertes, A. (2020) ‘In Vivo Chemical Analysis of Plant Sap from the Xylem and Single Parenchymal Cells by Capillary Microsampling Electrospray Ionization Mass Spectrometry.’ Analytical Chemistry, 92(10) pp. 7299–7306.
    Samota, M. K., Navnage, N. P. and Bhatt, L. (2017) ‘Role of Macro and Micronutrient in Development and Growth of Plant,’ 10(18) pp. 3171–3173.
    Santos, V. S., Santos, W. de J. R., Kubota, L. T. and Tarley, C. R. T. (2009) ‘Speciation of Sb(III) and Sb(V) in meglumine antimoniate pharmaceutical formulations by PSA using carbon nanotube electrode.’ Journal of Pharmaceutical and Biomedical Analysis, 50(2) pp. 151–157.
    Satoh, S. (2006) ‘Organic substances in xylem sap delivered to above-ground organs by the roots.’ Journal of Plant Research, 119(3) pp. 179–187.
    Scharifker, B. R., Mostany, J. and Serruya, A. (2000) ‘Catalytic reduction of nitrate during electrodeposition of thallium from Tl3+ solution.’ Electrochemistry Communications, 2(6) pp. 448–451.
    Scholander, P. F., Hammel, H. T., Bradstreet, E. D. and Hemmingsen, E. A. (1965) ‘Sap pressure in vascular plants.’ Science, 148(3668) pp. 339–346.
    Schurr, U. (1998) ‘Xylem sap sampling - New approaches to an old topic.’ Trends in Plant Science, 3(8) pp. 293–298.
    Schurr, U. (1999) ‘Dynamics of Nutrient Transport from the Root to the Shoot.’ In. Springer, Berlin, Heidelberg, pp. 234–253.
    Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., Aslam, M. and Dumat, C. (2015) ‘Heavy metal stress and crop productivity.’ In Crop Production and Global Environmental Issues. Springer International Publishing, pp. 1–25.
    Sharma, S. D. (2013) ‘History of Rice in Southeast Asia and Australia.’ Journal of Chemical Information and Modeling, 53(9) pp. 1689–1699.
    Shri, M., Singh, P. K., Kidwai, M., Gautam, N., Dubey, S., Verma, G. and Chakrabarty, D. (2019) ‘Recent advances in arsenic metabolism in plants: Current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice.’ Metallomics pp. 519–532.
    Simoni, R. D., Hill, R. L. and Vaughan, M. (2005) ‘Benedict ’ s Solution , a Reagent for Measuring Reducing Sugars : the Clinical Chemistry of Stanley R . Benedict,’ 277(16) pp. 10–12.
    Slamet-loedin, I., Slamet-loedin, I. H., Johnson-beebout, S. E., Impa, S. and Tsakirpaloglou, N. (2015) ‘Enriching rice with Zn and Fe while minimizing Cd risk.’ Frontiers in Plant Science, 6(MAR).
    Smedley, P. L. and Kinniburgh, D. G. (2000) ‘Source and behaviour of arsenic in natural waters.’ British Geological Survey p. 61.
    Smedley, P. L. and Kinniburgh, D. G. (2002) ‘A review of the source, behaviour and distribution of arsenic in natural waters.’ Applied Geochemistry pp. 517–568.
    Smith, A. H. and Smith, M. M. H. (2004) ‘Arsenic drinking water regulations in developing countries with extensive exposure.’ Toxicology, 198(1–3) pp. 39–44.
    Sobrado, M. A. (2007) ‘Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities.’ New Phytologist, 173(3) pp. 584–591.
    Sørensen, O., Andersen, A., Olsen, H., Alexandr, K., Ekstrøm, P. O., Giercksky, K. E. and Flatmark, K. (2010) ‘Validation and use of microdialysis for determination of pharmacokinetic properties of the chemotherapeutic agent mitomycin C - an experimental study.’ BMC Cancer, 10.
    Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D. and Prasad, T. N. V. K. V. (2013) ‘Occurrence, physiological responses and toxicity of nickel in plants.’ International Journal of Environmental Science and Technology. Center for Environmental and Energy Research and Studies pp. 1129–1140.
    Stazi, S. R., Cassaniti, C., Marabottini, R., Giuffrida, F. and Leonardi, C. (2016) ‘Arsenic uptake and partitioning in grafted tomato plants.’ Horticulture Environment and Biotechnology. Korean Society for Horticultural Science, 57(3) pp. 241–247.
    Steudle, E. (2001) THE COHESION-TENSION MECHANISM AND THE ACQUISITION OF WATER BY PLANT ROOTS. Annu. Rev. Plant Physiol. Plant Mol. Biol.
    Stoeva, N., Berova, M. and Zlatev, Z. (2005) ‘Effect of arsenic on some physiological parameters in bean plants.’ Biologia Plantarum, 49(2) pp. 293–296.
    Sulyok, M., Miró, M., Stingeder, G. and Koellensperger, G. (2005) ‘The potential of flow-through microdialysis for probing low-molecular weight organic anions in rhizosphere soil solution.’ Analytica Chimica Acta. Elsevier, 546(1) pp. 1–10.
    Sun, G., Williams, P. N. and Zhu, Y. (2009) ‘Mechanisms of Arsenic Uptake and Metabolism by Plants : Focusing on Rice.’ Environmental Toxicology, 134(November) pp. 1–6.
    Sun, H., Yan, S. C. and Cheng, W. S. (2000) ‘Interaction of antimony tartrate with the tripeptide glutathione.’ European Journal of Biochemistry, 267(17) pp. 5450–5457.
    Takarina, N. D. and Pin, T. G. (2017) ‘Bioconcentration Factor (BCF) and Translocation Factor (TF) of Heavy Metals in Mangrove Trees of Blanakan Fish Farm.’ Makara Journal of Science, 21(2).
    Tamás, M. J. (2016) ‘Cellular and molecular mechanisms of antimony transport, toxicity and resistance.’ Environmental Chemistry, 13(6) pp. 955–962.
    Tatár, E., Mihucz, V. G., Kmethy, B., Záray, G. and Fodor, F. (2000) ‘Determination of organic acids and their role in nickel transport within cucumber plants.’ Microchemical Journal, 67(1–3) pp. 73–81.
    Tatár, E., Mihucz, V. G., Varga, A., Záray, G. and Fodor, F. (1998) ‘Determination of Organic Acids in Xylem Sap of Cucumber: Effect of Lead Contamination.’ Microchemical Journal. Elsevier Inc., 58(3) pp. 306–314.
    Telford, K., Maher, W., Krikowa, F. and Foster, S. (2008) ‘Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS.’ Journal of Environmental Monitoring, 10(1) pp. 136–140.
    Telford, K., Maher, W., Krikowa, F., Foster, S., Ellwood, M. J., Ashley, P. M., Lockwood, P. V. and Wilson, S. C. (2009) ‘Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia.’ Environmental Chemistry, 6(2) pp. 133–143.
    Thomas, G. W. (1996) ‘Soil pH and soil acidity.’ In D.L. Sparks et al., editors (ed.) Methods of soil analysis: Part 3. SSSA Book Series No. 5. SSSA, pp. 475–490.
    Tian, T., Zhou, H., Gu, J., Jia, R., Li, H., Wang, Q., Zeng, M. and Liao, B. (2019) ‘Cadmium accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice (Oryza sativa L.).’ Plant and Soil.
    Timofeev, I. and Hutchinson, P. (2008a) ‘Microdialysis.’ In Essentials of Neuroanesthesia and Neurointensive Care. Elsevier, pp. 277–282.
    Timofeev, I. and Hutchinson, P. (2008b) ‘Microdialysis Learn more about Microdialysis Microdialysis Chemical and Biochemical Approaches for the Study of Anesthetic Function Part B Carrier-mediated and artificial-cell tar-.’
    Toghill, K. E., Lu, M., Compton, R. G. and Kathryn E. Toghill, Min Lu, and R. G. C. (2011) ‘Electroanalytical Determination of Antimony.’ International Journal of Electrochemical Science, 6(8) pp. 3057–3076.
    Tollestrup, K., Frost, F. J., Harter, L. C. and McMillan, G. P. (2003) ‘Mortality among children residing near the American Smelting and Refining Company (ASARCO) copper smelter in Ruston, Washington.’ Archives of Environmental Health, 58(11) pp. 683–691.
    Torto, N., Mwatseteza, J. and Laurell, T. (2001) ‘Microdialysis Sampling: Challenges and New Frontiers.’ LC GC Europe, 14(9) pp. 536–546.
    Torto, N., Mwatseteza, J. and Sawula, G. (2002) ‘A study of microdialysis sampling of metal ions.’ Analytica Chimica Acta, 456(2) pp. 253–261.
    Trejo-Téllez, L. I. (2012) ‘Nutrient Solutions for Hydroponic Systems.’ In Asao, F. C. G.-M. E.-T. (ed.). Rijeka: IntechOpen, p. Ch. 1.
    Tsang, J. J., Rozan, T. F., Hsu-Kim, H., Mullaugh, K. M. and Luther, G. W. (2006) ‘Pseudopolarographic determination of Cd2+ complexation in freshwater.’ Environmental Science and Technology, 40(17) pp. 5388–5394.
    Tschan, M., Robinson, B. H. and Schulin, R. (2009) ‘Antimony in the soil - Plant system - A review.’ Environmental Chemistry, 6(2) pp. 106–115.
    Tschan, M., Robinson, B. and Schulin, R. (2008) ‘Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution.’ Environmental Geochemistry and Health, 30(2) pp. 187–191.
    Tsukagoshi, S. and Shinohara, Y. (2015) Nutrition and Nutrient Uptake in Soilless Culture Systems. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Elsevier Inc.
    Tuyogon, D. S. J., Impa, S. M., Castillo, O. B., Larazo, W. and Johnson-Beebout, S. E. (2016) ‘Enriching rice grain zinc through zinc fertilization and water management.’ Soil Science Society of America Journal, 80(1) pp. 121–134.
    Tylenda, C. A., Sullivan, D. W. and Fowler, B. A. (2015) Antimony. Handbook on the Toxicology of Metals: Fourth Edition. Fourth Edi, Elsevier.
    U.S. Department of Health and Human (2018) Revised Draft : Report on Carcinogens Monograph on Antimony Trioxide.
    U.S. Geological Survey (2004) ‘Mineral Commodity Profiles-Antimony.’ U.S. Department of the Interior: U.S. Geological Survey pp. 1–35.
    Ugochukwu, G. C., Eneh, F. U., Igwilo, I. . and Aloh, C. H. (2017) ‘Comparative study on the heavy metal content of domestic rice (Oryza sativa Comparative study on the heavy metal content of domestic rice (Oryza sativa L) brands common in Awka, Nigeria.’ IOSR Journal of Environmental Science, Toxicology and Food Technology, 11(8) pp. 67–70.
    Ungureanu, G., Santos, S., Boaventura, R. and Botelho, C. (2015) ‘Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption.’ Journal of Environmental Management, 151, March, pp. 326–342.
    Uroic, M. K. (2011) THE IMPACT OF ARSENIC SPECIES ON THE PRODUCTION AND COMPOSITION OF XYLEM SAP Miran Kalle Uroic. Environmental & Analytical Chemistry. University of Aberdeen.
    Uroic, M. K., Salaün, P., Raab, A. and Feldmann, J. (2012) ‘Arsenate impact on the metabolite profile, production, and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.).’ Frontiers in Physiology, 3 APR(March) pp. 1–23.
    Varsányi, I., Fodré, Z. and Bartha, A. (1991) ‘Arsenic in drinking water and mortality in the Southern Great Plain, Hungary.’ Environmental Geochemistry and Health. Kluwer Academic Publishers, 13(1) pp. 14–22.
    Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G. and Pigna, M. (2010) ‘Mobility and bioavailability of heavy metals and metalloids in soil environments.’ Journal of Soil Science and Plant Nutrition. Sociedad Chilena de la Ciencia del Suelo, 10(3) pp. 268–292.
    Vithanage, M., Dabrowska, B. B., Mukherjee, A. B., Sandhi, A. and Bhattacharya, P. (2012) ‘Arsenic uptake by plants and possible phytoremediation applications: A brief overview.’ Environmental Chemistry Letters pp. 217–224.
    Wagner, S. E., Peryea, F. J. and Filby, R. A. (2003) ‘Antimony Impurity in Lead Arsenate Insecticide Enhances the Antimony Content of Old Orchard Soils.’ Journal of Environmental Quality. Wiley, 32(2) pp. 736–738.
    Wan, X. M., Tandy, S., Hockmann, K. and Schulin, R. (2013) ‘Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake.’ Environmental Pollution. Elsevier Ltd, 172, January, pp. 53–60.
    Wang, S., Shi, X., Sun, H., Chen, Y., Pan, H., Yang, X. and Rafiq, T. (2014) ‘Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead.’ PLoS ONE. Public Library of Science, 9(9).
    Wang, T., Yang, Q., Wang, Y., Wang, J., Zhang, Y. and Pan, W. P. (2019) ‘Arsenic release and transformation in co-combustion of biomass and coal: Effect of mineral elements and volatile matter in biomass.’ Bioresource Technology. Elsevier Ltd, February.
    Wang, Z., Zeng, X., Geng, M., Chen, C., Cai, J., Yu, X., Hou, Y. and Zhang, H. (2015) ‘Health risks of heavy metals uptake by crops grown in a sewage irrigation area in China.’ Polish Journal of Environmental Studies, 24(3) pp. 1379–1386.
    Welch, A and Stollenwerk, K. (2003) Arsenic in ground water. Dodrecht: Kluwer Academic.
    Welch, A. H. and and Stollenwerk, K. G. (2003) Edited By. Office.
    White, M. C., Chaney, R. L., Decker, A. M. and R., and M. W. D. A. (1981) ‘Metal Complexation in Xylem Fluid: I. CHEMICAL COMPOSITION OF TOMATO AND SOYBEAN STEM EXUDATE.’ Plant Physiology, 67(2) pp. 292–300.
    WHO (2003a) ‘Antimony in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality.’ Who pp. 1–9.
    WHO (2003b) ‘Antimony in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality.’ Who pp. 1–9.
    WHO (2018) GUIDELINES FOR DRINKING-WATER QUALITY.
    Wickliff, J. L. and Aronoff, S. (1962) Quantitative measurement of leaf chlorophylss by spectrophotometry of their pheophytins in aqueous alcoholic extracts. Iowa, USA.
    Williams, P. N., Islam, M. R., Adomako, E. E., Raab, A., Hossain, S. A., Zhu, Y. G., Feldmann, J. and Meharg, A. A. (2006) ‘Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters.’ Environmental Science and Technology pp. 4903–4908.
    Wilson, S. C., Lockwood, P. V., Ashley, P. M. and Tighe, M. (2010) ‘The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review.’ Environmental Pollution pp. 1169–1181.
    Woolson, E. A., Axley, J. H. and Kearney, P. C. (1971) ‘Correlation between Available Soil Arsenic, Estimated by Six Methods, and Response of Corn (Zea mays L.)1.’ Soil Science Society of America Journal. Soil Science Society of America, 35(1) p. 101.
    Wu, D. and Sun, S. (2016a) ‘Speciation analysis of As, Sb and Se.’ Trends in Environmental Analytical Chemistry. Elsevier Inc., 11 pp. 9–22.
    Wu, D. and Sun, S. (2016b) ‘Speciation analysis of As, Sb and Se.’ Trends in Environmental Analytical Chemistry. Elsevier pp. 9–22.
    Wu, T. L., Cui, X. D., Cui, P. X., Ata-Ul-Karim, S. T., Sun, Q., Liu, C., Fan, T. T., Gong, H., Zhou, D. M. and Wang, Y. J. (2019) ‘Speciation and location of arsenic and antimony in rice samples around antimony mining area.’ Environmental Pollution. Elsevier Ltd, 252, September, pp. 1439–1447.
    www.IRRI.org (2019) Long-Term Continuous Cropping Experiment (LTCCE) | International Rice Research Institute. [Online] [Accessed on 18th November 2019] https://www.irri.org/long-term-continuous-cropping-experiment-ltcce.
    Wyrwicka, A., Urbaniak, M. and Przybylski, M. (2019) ‘ The response of cucumber plants ( Cucumis sativus L.) to the application of PCB-contaminated sewage sludge and urban sediment .’ PeerJ, 7 p. e6743.
    Xu, X. Y., McGrath, S. P. and Zhao, F. J. (2007) ‘Rapid reduction of arsenate in the medium mediated by plant roots.’ New Phytologist, 176(3) pp. 590–599.
    Yadav, S. K. (2010) ‘Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants.’ South African Journal of Botany pp. 167–179.
    Ye, W.-L., Wood, B. A., Stroud, J. L., Andralojc, P. J., Raab, A., McGrath, S. P., Feldmann, J. and Zhao, F.-J. (2010) ‘Arsenic speciation in phloem and xylem exudates of castor bean.’ Plant physiology, 154(3) pp. 1505–1513.
    Zavala, Y. J. and Duxbury, J. M. (2008) ‘Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain.’ Environmental Science and Technology, 42(10) pp. 3856–3860.
    Zengin, F. K. and Munzuroglu, O. (2005) ‘Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings.’ Acta Biologica Cracoviensia Series Botanica, 47(2) pp. 157–164.
    Zhang, H. and Selim, H. M. (2005) ‘Kinetics of arsenate adsorption - desorption in soils.’ Environmental Science and Technology, 39(16) pp. 6101–6108.
    Zhang, T., Ruan, J., Zhang, B., Lu, S., Gao, C., Huang, L., Bai, X., Xie, L., Gui, M. and Qiu, R. liang (2019) ‘Heavy metals in human urine, foods and drinking water from an e-waste dismantling area: Identification of exposure sources and metal-induced health risk.’ Ecotoxicology and Environmental Safety. Academic Press, 169, March, pp. 707–713.
    Zhang, W., Cai, Y., Tu, C. and Ma, L. Q. (2002) ‘Arsenic speciation and distribution in an arsenic hyperaccumulating plant.’ Science of the Total Environment, 300(1–3) pp. 167–177.
    Zhao, F.-J., McGrath, S. P. and Meharg, A. A. (2010) ‘Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies.’ Annual Review of Plant Biology. Annual Reviews, 61(1) pp. 535–559.
    Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. and McGrath, S. P. (2015) ‘Soil contamination in China: Current status and mitigation strategies.’ Environmental Science and Technology. American Chemical Society pp. 750–759.
    Zheng, J., Iijima, A. and Furuta, N. (2001) ‘Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(III) and antimony(V) using HPLC-ICP-MS.’ Journal of Analytical Atomic Spectrometry, 16(8) pp. 812–818.
    Zheng, R. L., Sun, G. X. and Zhu, Y. G. (2013) ‘Effects of microbial processes on the fate of arsenic in paddy soil.’ Chinese Science Bulletin pp. 186–193.
    Zhou, S. N., Ouyang, G. and Pawliszyn, J. (2008) ‘Comparison of microdialysis with solid-phase microextraction for in vitro and in vivo studies.’ Journal of Chromatography A, 1196–1197(1–2) pp. 46–56.
    Zhou, X., Sun, C., Zhu, P. and Liu, F. (2018) ‘Effects of Antimony Stress on Photosynthesis and Growth of Acorus calamus.’ Frontiers in Plant Science. Frontiers Media S.A., 9, May, p. 579.
    Zulkafflee, N. S., Redzuan, N. A. M., Hanafi, Z., Selamat, J., Ismail, M. R., Praveena, S. M. and Razis, A. F. A. (2019) ‘Heavy metal in paddy soil and its bioavailability in rice using in vitro digestion model for health risk assessment.’ International Journal of Environmental Research and Public Health, 16(23).

    QR CODE