簡易檢索 / 詳目顯示

研究生: 丁慧善
Ding, Hui-Shan
論文名稱: 以多種前處理方式提升木屑葡萄糖糖化率之研究
Study on Enhancing Glucose Recovery of Wood Dust by Various Pretreatments
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員: 王竹方
蔣孝澈
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 52
中文關鍵詞: 木質纖維素葡萄糖糖化率鹼性過氧化氫超臨界CO2爆破CO2加壓THF水溶液
外文關鍵詞: lignocellulose, glucose recovery, alkaline peroxide, supercritical CO2 explosion, CO2 compressed THF aqueous solution
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生質酒精為綠色能源發展的重點,相較於以糧食作物作為生質物料的來源,近年來多以木質纖維素取代。由於木質纖維素結構緊密、不易分解,間接阻礙酵素對纖維素的水解以及醣類的發酵過程,利用有效的前處理方法可破壞木質纖維素之結構並解決以上問題。本研究以木屑作為生質酒精製程的木質纖維素來源,木屑為一種木質素含量極高的木質纖維素,木質素包覆著纖維素,使纖維素難以水解為葡萄糖,導致木屑極少用來進行纖維酒精的生產。本研究使用三種不同的前處理方法,分別為CO2爆破前處理、CO2加壓THF水溶液前處理、鹼性過氧化氫前處理,並將三種前處理方式互相搭配,其最佳方式為CO2加壓THF水溶液進行前處理,再以鹼性過氧化氫前處理,經此方式前處理之後,纖維素比例為72.0%、半纖維素比例為5.3%、木質素比例為19.8%,SEM圖顯示其木質纖維素結構已被高度破壞,由於半纖維素去除率為84.9%、木質素去除率79.3%,因此在酵素水解後,糖化率可達85.7%,高於純纖維素水解的糖化率76%。


    Bioethanol is the focus of green energy development. Instead of using food crops as a source of biomass, lignocellulose is an interested material recently. Because of the crystal structure of cellulose and cellulose covered by lignin, lignocellulose can’t get high sugar yield of the hydrolysis process and high bioethanol yield of fermentation process. The effective pretreatment method is needed to solve the above problems. In this study, wood dust was used as the source of lignocellulose in the bioethanol process. Wood dust is a kind of lignocellulose with extremely high lignin content. Lignin coats cellulose, making it difficult for cellulose to hydrolysis, resulting in very little use of woods for the production of bioethanol. This study uses a variety of different pretreatment methods, which are supercritical CO2 explosion pretreatment, CO2 compressed THF aqueous solution pretreatment, alkaline peroxide pretreatment, and combines these methods to make higher glucose recovery. The best way is CO2 compressed THF aqueous solution followed by alkaline peroxide pretreatment. After pretreating in this way, the proportion of cellulose is 72.0%, hemicellulose is 5.3%, and lignin is 19.8 %. The SEM image also shows that its lignocellulose structure has been highly destroyed. 84.9% of hemicellulose is removed, and delignification is 79.3%. Therefore, after enzyme hydrolysis, the glucose recovery could reach 85.7%, which is higher than that 76% of pure cellulose hydrolysis.

    目錄 摘要 i 目錄 iii 圖目錄 v 表目錄 vi 一、緒論 1 二、文獻回顧 3 2-1生質酒精 3 2-2木質纖維素 4 2-2-1纖維素 5 2-2-2半纖維素 5 2-2-3木質素 6 2-3前處理技術 7 2-3-1超臨界二氧化碳前處理 11 2-3-2熱水法前處理 15 2-3-3共溶劑法前處理 15 2-3-4鹼性過氧化氫前處理 17 2-4纖維素酵素水解 18 三、實驗方法 20 3-1實驗藥品與儀器 20 3-1-1實驗藥品 20 3-1-2實驗儀器 21 3-2實驗裝置與步驟 22 3-2-1以CO2加壓THF水溶液前處理木屑 23 3-2-2以超臨界CO2爆破前處理木屑 23 3-2-3以鹼性過氧化氫前處理木屑 24 3-2-4 NREL生質物料之醣類以及木質素含量標準檢驗法 24 3-2-5纖維水解酵素活性測試 25 3-2-6酵素水解 26 3-3數據處理 27 四、實驗結果與討論 29 4-1研究流程圖 29 4-2纖維水解酵素活性測試結果 29 4-3以CO2爆破配搭CO2加壓THF水溶液前處理木屑 30 4-4以鹼性過氧化氫前處理木屑 34 4-5以CO2加壓THF水溶液配搭鹼性過氧化氫前處理木屑 37 4-6比較多種方式前處理木屑 40 五、結論與建議 48 六、參考文獻 49 圖目錄 圖2-1 生質酒精生產製程 4 圖2-2 木質纖維素之結構(Alvarez et al., 2015) 5 圖2-3 木質纖維素前處理示意圖(Gu et al., 2013) 7 圖2-4 不同前處理方法下水解葡萄糖產率 10 圖2-5 純物質之相圖 12 圖2-6 二氧化碳及水在37 ℃下壓力及pH之關係(Meyssami et al., 1992) 13 圖2-7 有無THF對木質纖維素構造破壞的差異(Cai et al., 2013) 17 圖2-8 纖維水解酵素作用機制(Beguin et al., 1987) 19 圖3-1 CO2爆破及CO2加壓THF水溶液前處理木屑裝置 22 圖4-1 研究流程圖 29 圖4-2 CO2爆破的操作變因對木屑組成之影響 33 圖4-3 鹼性過氧化氫前處理的操作變因對木屑組成之影響 36 圖4-4 以CO2加壓THF水溶液搭配鹼性過氧化氫前處理對木屑組成之影響 39 圖4-5 比較多種前處理方式對木屑組成之影響 45 圖4-6 木屑之表面結構分析 46 圖4-7 比較經前處理後的纖維素與原始纖維素之XRD分析 47   表目錄 表2-1 常見木質纖維素原料組成 6 表2-2 各前處理方法對木質纖維素組成與結構之影響(Chin et al., 2020) 10 表2-3 各前處理方法優缺點之比較 11 表2-4 常用超臨界流體的臨界溫度及壓力(Sako, 2002) 12 表2-5 CO2爆破之文獻整理 14 表2-6 各有機溶劑前處理對木質纖維素組成之影響(Chin et al., 2020) 16 表2-7 鹼性過氧化氫前處理之文獻比較(Ho et al., 2019) 18 表3-1 酵素稀釋液 25 表4-1 酵素濃度對應其產生之葡萄糖濃度 30 表4-2 以CO2爆破再以CO2加壓THF水溶液前處理木屑之結果 32 表4-3 以鹼性過氧化氫前處理木屑之結果 35 表4-4 以CO2加壓THF水溶液搭配鹼性過氧化氫前處理木屑之結果 38 表4-5 比較多種方式前處理木屑之結果 43

    吳美儀,“利用超臨界CO2配搭超聲波及過氧化氫前處理狼尾草”,碩士論文,國立清華大學化學工程研究所,2013
    林威廷,“利用超臨界二氧化碳與超音波前處理狼尾草與甘蔗渣”,碩士論文,國立清華大學化學工程研究所,2012
    趙婉宇,“以氫氟酸搭配鹼性過氧化氫浸泡前處理法提升稻殼產醣效率之研究”,碩士論文,國立交通大學環境工程研究所,2013
    Phan The Duy,“Sequential Pretreatment Methods with Supercritical CO2 for Lignocellulosic Biomass”,博士論文,國立清華大學化學工程研究所,2016
    姚秀清,張全,楊祥華,王金龍,“鹼性雙氧水法預處理木質纖維素”,化學與生物工程,第3期,P.34-37,2009
    Alvarez, A., Pizarro, C., Garcia, R., Bueno, J.L. 2015. Spanish biofuels heating value estimation based on structural analysis. Industrial Crops and Products, 77, 983-991.
    Ascencio, J.J., Chandel, A.K., Philippini, R.R., da Silva, S.S. 2019. Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment. Biomass Conversion and Biorefinery.
    Beguin, P., Gilkes, N.R., Kilburn, D.G., Miller, R.C., Oneill, G.P., Warren, R.A.J. 1987. Cloning of Cellulase Genes. Crc Critical Reviews in Biotechnology, 6(2), 129-162.
    Boboescu, I.Z., Damay, J., Chang, J.K.W., Beigbeder, J.B., Duret, X., Beauchemin, S., Lalonde, O., Lavoie, J.M. 2019. Ethanol production from residual lignocellulosic fibers generated through the steam treatment of whole sorghum biomass. Bioresource Technology, 292.
    Cai, C.M., Zhang, T.Y., Kumar, R., Wyman, C.E. 2013. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chemistry, 15(11), 3140-3145.
    Capolupo, L., Faraco, V. 2016. Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 100(22), 9451-9467.
    Chin, D.W.K., Lim, S., Pang, Y.L., Lam, M.K. 2020. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels Bioproducts & Biorefining-Biofpr, 14(4), 808-829.
    Ghose, T.K. 1987. Measurement of Cellulase Activities. Pure and Applied Chemistry, 59(2), 257-268.
    Gu, T.Y., Held, M.A., Faik, A. 2013. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environmental Technology, 34(13-14), 1735-1749.
    Ho, M.C., Ong, V.Z., Wu, T.Y. 2019. Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization - A review. Renewable & Sustainable Energy Reviews, 112, 75-86.
    Jessop, P.G. 2011. Searching for green solvents. Green Chemistry, 13(6), 1391-1398.
    Jonsson, L.J., Martin, C. 2016. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103-112.
    Kim, K.H., Hong, J. 2001. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77(2), 139-144.
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P. 2009. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729.
    Li, H.Q., Qu, Y.S., Yang, Y.Q., Chang, S.L., Xu, J. 2016. Microwave irradiation - A green and efficient way to pretreat biomass. Bioresource Technology, 199, 34-41.
    Mcdonough, T.J. 1983. Wood Chemistry - Fundamentals and Applications - Sjostrom,E. Journal of the American Chemical Society, 105(13), 4503-4503.
    Meyssami, B., Balaban, M.O., Teixeira, A.A. 1992. Prediction of Ph in Model Systems Pressurized with Carbon-Dioxide. Biotechnology Progress, 8(2), 149-154.
    Mikulski, D., Klosowski, G. 2020. Microwave-assisted dilute acid pretreatment in bioethanol production from wheat and rye stillages. Biomass & Bioenergy, 136.
    Mojovic, L., Pejin, D., Rakin, M., Pejin, J., Nikolic, S., Djukic-Vukovic, A. 2012. How to improve the economy of bioethanol production in Serbia. Renewable & Sustainable Energy Reviews, 16(8), 6040-6047.
    Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., Ladisch, M.R. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology, 96(18), 1986-1993.
    Narayanaswamy, N., Faik, A., Goetz, D.J., Gu, T.Y. 2011. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresource Technology, 102(13), 6995-7000.
    Phan, D.T., Tan, C.S. 2014. Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide. Bioresource Technology, 167, 192-197.
    Sako, T. 2002. Supercritical fluids: molecular interactions, physical properties, and new applications. Springer science & business media.
    Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J. 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98(16), 3000-3011.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.J.L.a.p. 2008. Determination of structural carbohydrates and lignin in biomass. 1617, 1-16.
    Sun, Y., Cheng, J.Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11.
    Toscan, A., Morais, A.R.C., Paixao, S.M., Alves, L., Andreaus, J., Camassola, M., Dillon, A.J.P., Lukasik, R.M. 2017. High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency. Bioresource Technology, 224, 639-647.
    Yu, I.K.M., Tsang, D.C.W. 2017. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716-732.
    Zhang, Q.Z., Zhao, M.J., Xu, Q.Q., Ren, H.R., Yin, J.Z. 2019. Enhanced Enzymatic Hydrolysis of Sorghum Stalk by Supercritical Carbon Dioxide and Ultrasonic Pretreatment. Applied Biochemistry and Biotechnology, 188(1), 101-111.

    QR CODE