研究生: |
沙米爾 Samir Kundlik Pawar |
---|---|
論文名稱: |
以過渡金屬催化合成具官能基碳環及異員環新途徑之發展 Development of New Synthetic Approaches to Access Functionalized Carbocycles and Heterocycles by Transition Metal Catalysis |
指導教授: |
劉瑞雄
Liu, Rai Shung |
口試委員: |
蔡易州
Tsai, Yi Chou 吳明忠 Wu, Ming Jung 侯敦仁 Hou, Duen Ren 陳銘洲 Chen, Ming Chou |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 539 |
中文關鍵詞: | 金催化 、和環 、炔醯胺 、氧化加成 、異員環 |
外文關鍵詞: | Gold-Catalyzed, Formal cycloaddition, Ynamides, oxidative cyclizations, Heterocycles |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract (Chinese)
本文描述使用金與銀鹽類之有機合成轉換的新途徑之發展。藉由軟性親炔的金屬可使易取得的基質經由溫和、非對映選擇性、高效率地轉換成多種碳環、含氮或氧之雜環。為了更清楚地瞭解本文,本文分成四個章節。
第一章主要探討2-乙炔基芐醚與有機氧化物透過金催化環加成反應合成1,3-二氫異衍生物。這類以1,3-二氫異苯基呋喃為核心的化合物是自然界中最常見的結構之一,且十分廣泛的被應用在重要的結構以及生物學中。這種產物的核心結構是通過[4+ 1]環-α-羰卡賓和系留式醚類所構成。該催化劑的效用包括對苯基和不同醚類的各種取代。
第二章論述金以及銀催化炔醯胺、芳基氧雜環丁烷和芳基氮雜環丁烷進行一[4+2]環加成反應,形成六元雜環。氧雜環丁烷做為親核劑,而金--炔醯胺則為親電劑。在氮雜環丁烷的案例中,我們發現銀六氟銻比金催化劑更有效催化炔醯胺之[4+2]-環加成。此二環加成反應適用在合理的範圍內之炔醯胺、氧雜環丁烷以及氮雜環丁烷,進而表現其合成六元雜環之實用性,如6-氨基-3,4-二氫-2氫-吡喃和2-氨基-1,4,5,6-四氫吡啶。
第三章介紹炔醯胺分別與2H-氮環丙烯、疊氮烯烴透過金催化進行環加成,得到兩個不同類別的[3+2]或[4+3]環加成物。炔醯胺與2H-氮環丙烯類的環加成反應可得到吡咯類產物。而對於苯基取代富含電子的炔醯胺,與疊氮烯烴通過新穎的[4+ 3]環加成反應來形成-1H-苯基-[d]-氮雜產物。
第四章介紹透過共激活模式以1,6-二炔與-8-甲基喹啉N-氧化物合成出3-酮萘酚和3-酮基酚衍生物合成方法之發展。本反應的價值反應在其適用於廣泛的苯和非苯類衍生基質。
Abstract
This dissertation describes development of new synthetic organic transformations by using gold and silver salts. The use of these soft alkynophilic metals enables mild, diastereoselective and efficient transformations of a variety of readily available substrates to wide range of synthetically useful carbocyclic and nitrogen or oxygen containing heterocyclic products. For better understanding the thesis is divided into four chapters.
The first chapter deals with the Gold-catalyzed reactions of 2-ethynylbenzyl ethers with organic oxides for synthesis of 1,3-dihydroisobenzofuran derivatives through a formal cycloaddition reaction. Such 1,3-dihydroisobenzofuran core is one of the most commonly encountering skeletons in nature and the core scaffold has a wide spread application in structural and biological importance. The core structures of the resulting products are constructed through a formal [4+1] cycloaddition among α-carbonyl carbenoids and tethered ethers. The utility of this catalysis includes various substituents on phenyl groups and different ethers.
The second chapter deals with the Gold- and Silver-catalyzed [4+2] cycloaddition reactions of ynamides with aryl-oxetanes and aryl-azetidines to form six membered heterocycles. Oxetanes function as nucleophiles whereas gold--ynamides are present as electrophiles. In the case of azetidines, silver hexafluoroantimonate was found to be more active than gold catalyst in their [4+2]-cycloadditions with ynamides. The two cycloadditions are applicable to a reasonable range of ynamides, oxetanes and azetidines, thus manifesting their synthetic utility to access six-membered heterocycles such as 6-amino-3,4-dihydro-2H-pyrans and 2-amino-1,4,5,6-tetrahydropyridines.
The third chapter describes the Gold-catalyzed cycloadditions of ynamides with azidoalkenes or 2H-azirines to give [3+2] or [4+3] formal cycloadducts of two different classes. Cycloadditions of ynamides with 2H-azirine species afford pyrrole products. For ynamides substituted with an electron-rich phenyl group, their reactions with azidoalkenes proceed through novel [4+3] cycloadditions to deliver 1H-benzo[d]azepine products instead.
The fourth chapter presents development of a oxidative cyclizations of 1,6 diynes with 8-methylquinoline N-oxides through dual activation mode to achieve 3-keto naphthols and 3-keto phenol derivatives. The value of the reaction is reflected by their applicability to a broad range of benzene- and nonbenzene-derived substrates.
Chapter I
1. a) Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; T. Hudlicky, Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1. b) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
2. a) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002. b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
3. a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. c) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
4. a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. c) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. d) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029. e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. f) For cyclization of allenynes with nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596. g) Gorin, D. J.; Dube, P.;Toste, F. D. J. Am.Chem. Soc. 2006, 128, 14480.
5. a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
6. a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. b) Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975. c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
7. a) Hutchings, G. J. Gold Bull. 1996, 29, 123. b) Hutchings, G. J. Catal. Today, 2002, 72, 11.
8. Reviews for gold-catalyzed annulation or cycloaddition reactions, a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. b) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, 5, 6. c) Abu Sohel, S. Md.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. d) Fürstner, A.; Davies, P. W. Angew Chem. Int. Ed. 2007, 46, 3410. e) Shapiro, N. D.; Toste, F. D. Synlett, 2010, 675.
9. a) Soriano, E.; J. Marco-Contelles. Acc. Chem. Res. 2009, 42, 1026. b) Lee, S. I.; N. Chatani. Chem. Commun. 2009, 371. c) Kirsch S. F. Synthesis 2008, 3183. d) Muzart. J. Tetrahedron, 2008, 64, 5815. e) Widenhoefer R. A. Chem. Eur. J. 2008, 14, 5382.
10. a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47, 6754. b) Bongers, N.; Krause. N. Angew. Chem. Int. Ed. 2008, 47, 2178. c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. d) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657.
11. a) Boorman, T. C.; Larrosa. I. Chem. Soc. Rev. 2011, 40, 1910. b) Bandini. M. Chem. Soc. Rev. 2011, 40, 1358. c) Krause, N.; Winter. C. Chem. Rev. 2011, 111, 1994. d) Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405. e) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536. f) Das, A.; Sohel, S. M. A.; Liu, R.-S. Org. Biomol. Chem. 2010, 8, 960.
12. For recent examples see: a) Ando, K. J. Org. Chem. 2010, 75, 8516. b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A. 2010, 114, 12893. d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720. e) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 2009, 1, 482.
13. Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226.
14. Zhang, L. Acc. Chem. Res. 2014, 47, 877.
15. Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
16. Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
17. Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
18. Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
19. He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
20. Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu. R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911.
21. a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2010, 49, 5232. A similar mechanism was proposed for the Pt catalyzed process, see: b) Martín-Matute, B.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2001, 40, 4754. c) Martín-Matute, B.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757. d) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553. e) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wölfle, M.; Frey, W.; Bats, J. W. Angew. Chem. Int. Ed. 2005, 44, 2798.
22. a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. b) Straub, B. F. Chem. Commun. 2004, 1726.
23. For metal-catalyzed cycloaddition reactions, see selected reviews: a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40. b) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791; Reviews for gold-catalyzed cycloaddition reactions, see: a) López, F.; Mascareñas, J. L. Beilstein, J. Org. Chem. 2011, 7, 1075. b) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954. c) Garayalde, D.; Nevado, C. ACS. Catal. 2012, 2, 1462.
24. a) Mandai, T.; Tsuji, J.; Tsujiguchi, Y.; Saito, S. J. Am. Chem. Soc. 1993, 115, 5865. b) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 2950. c) Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9690. d) Eaton, B. E.; Eollman, B. J. Am. Chem. Soc. 1992, 114, 6245. e) Sigman, M. S.; Eaton, B. E. J. Am. Chem. Soc. 1996, 118, 11783.
25. a) Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 11313. b) Danheiser, R. L.; Gould, A. E.; Predilla, R. Fernandez de la; Helgason, A. L. J. Org. Chem. 1994, 59, 5514. c) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. d) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
26. a) Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012, 14, 692. b) Lin, M.; Li, F.; Jiao, L.; Yu, Z.-X. J. Am. Chem. Soc. 2011, 133, 1690. c) Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Tang, W. Angew. Chem. Int. Ed. 2011, 50, 1346. d) Kamitani, A.; Chatani, N.; Moromoto, T.; Murai, S. J. Org. Chem. 2000, 65, 9230.
27. a) Brancour, C.; Kukuyama, T.; Ohta, Y.; Ryu, I.; Dhimane, A.-L.; Fenterbank, L.; Malacria, M. Chem. Commun. 2010, 46, 5470. b) Kukuyama, T.; Ohta, Y.; Brancour, C.; Miyagawa, K.; Ryo, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Chem. Eur. J. 2012, 18, 7243.
28. For metal-catalyzed carboalkoxylations of alkynes; see selected examples: a) Dubé, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062. b) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. c) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. d) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546. f) Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 15022.
29. Braga, A. L.; Ludrke, D. S.; Vargas, F.; Paixáo, M. W. Chem. Commun. 2005, 2512.
30. Species (R)-(+)-1-2k (93.9 % ee) was treated with ozone to give (R)-(- )-1-5a ([] = -39.6, CHCl3). This R-enantiomer was reported to have [] = -48.6 in CHCl3; see Ramachandran, P. V.; Chen, G.-M.; Brown, H. C. Tetrahedron Lett. 1996, 37, 2205.
31. Selected examples: a) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 132, 14070. b) Dateer, R.-B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
32. Karad, S. N.; Bhunia, S.; Liu, R.-S. Angew. Chem. 2012, 124, 8852; Angew. Chem. Int. Ed. 2012, 51, 8722.
33. We exclude a double inversion mechanism for the retention of stereochemistry; this process presumably involves the attack of OTf- on intermediate D in Scheme 22. However, the use of LAuSbF6 on R-(+)-1-k (90.5 %) gave desired R-(-)-1-2k with 90.5 % ee, thus excluding its possibility.
34. a) Harper, J. K.; Arif, A. M.; Ford, E. J.; Strobel, G. A.; Porco, J. A. Jr.; Tomer, D. P.; Oneill, K. L.; Heider E. M.; Grant, D. M. Tetrahedron. 2003, 59, 2471. b) Moore, N.; Verdoux, H.; Fantino, B. Int. Clin. Psychopharmacol. 2005, 20, 131. c) Andrews, S. W.; Guo, X.; Zhu, Z.; Hull, C. E.; Wurster, J. A.; Wang, S.; Wang, E. H.; Malone, T. US Pat. USXXCO US 20060004084 A1 20060105, CAN 144: 108205, An 2006: 14038., 2006, p. 316. d) Lin, G.; Chan, S. S.-K.; Chung, H.-S.; Li, S.-L. in Studies in Natural Products Chemistry, Vol. 32 (Ed.: Atta-ur-Rahman), Elsevier, Amsterdam, 2005, pp. 611. e) Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213.
Chapter 2
1. See reviews: a) Boger, D. L. Chem. Rev. 1986, 86, 781. b) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741. c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668. d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. e) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew.Chem. Int. Ed. 1995, 34, 259. f) Trost, B. M. Science. 1991, 254, 1471. g) Benbow, J. F.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 12305. h) McClure, K.; Benbow, J. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1991, 113, 8185.
2. a) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845. b) Martin, J. N.; Jones, R. C. F.; Padwa, A.; Pearson, W. H. John Wiley & Sons: Hoboken, NJ, 2003; Chapter 1. c) Gothelf, K. V.; Kobayashi, S.; Jørgensen, K. A. Wiley-VCH: Weinheim, Germany, 2002; Chapter 6. d) Kanemasa, S.; Kobayashi, S.; Jørgensen, K. A. Wiley-VCH: Weinheim, Germany, 2002; Chapter 7.
3. a) Undheim, K. T. Benneche, in Comprehensive Heterocyclic Chemistry II, Vol. 6 (Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; McKillop A.), Pergamon, Oxford, 1996, p. 93. b) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. c) Joule, J. A.; Mills, K. in Heterocyclic Chemistry, 4th ed., Blackwell, Cambridge, 2000, p. 194. d) Erian, A.W. Chem. Rev. 1993, 93, 1991.
4. a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. d) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. e) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. f) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. g) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. h) Shen, H. C. Tetrahedron 2008, 64, 7847.
5. a)Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. b) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. c) Jiménez-Nuñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. d) Michelet, V.; Toullec, P. Y.; Genêt, J. P. Angew. Chem. Int. Ed. 2008, 47, 4268.
6. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
7. a) Fowden, L. Nature 1955, 176, 347. b) Bannon, A. W.; Decker, M. W.; Holladay, M. W.; Curzon, P.; Donnelly-Roberts, D.; Puttfarcken, P. S.; Bitner, R. S.; Diaz, A.; Dickenson, A. H.; Porsolt, R. D.; Williams, M.; Arneric, S. P. Science 1998, 279, 77.
8. a) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Salgado, N. R. J. Org. Chem. 1999, 64, 9596.
9. a) Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1994, 50, 5775. b) Akiyama, T.; Daidouji, K.; Fuchibe, K. Org. Lett. 2003, 5, 3691. c) Domostoj, M.; Ungureanu, I.; Schoenfelder, A.; Klotz, P.; Mann, A. Tetrahedron Lett. 2006, 47, 2205. d) Vargas-Sanchez, M.; Couty, F.; Evano, G.; Prim, D.; Marrot, J. Org. Lett. 2005, 7, 5861. e) Van Brabandt, W.; Landeghem, R. V.; De Kimpe, N. Org. Lett. 2006, 8, 1105. f) Golding, P.; Millar, R. W.; Paul, N. C.; Richards, D. H. Tetrahedron 1995, 51, 5073. g) Vanecko, J. A.; West, F. G. Org. Lett. 2005, 7, 2949. h) Mullis, J. C.; Weber, W. P. J. Org. Chem. 1982, 47, 2873. i) Carr, S. A.; Weber, W. P. J. Org. Chem. 1985, 50, 2782.
10. a) Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Chem. Commun. 2001, 958. b) Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Tetrahedron Lett. 2001, 42, 6087. c) Prasad, B. A. B.; Bisai, A.; Singh, V. K. Org. Lett. 2004, 6, 4829. d) Yadav, V. K.; Sriramurthy, V. J. Am. Chem. Soc. 2005, 127, 16366.
11. a) Baeg, J.-O.; Bensimon, C.; Alper, H. J. Org. Chem. 1995, 60, 253. b) Baeg, J.-O.; Alper, H. J. Org. Chem. 1995, 60, 3092.
12. Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Tetrahedron Lett. 2001, 42, 6087.
13. Prasad, B. A. B.; Bisai, A.; Singh, V. K. Org. Lett. 2004, 26, 4829.
14. Ghorai, M.; Das, K.; Kumar, A.; Das, A. Tetrahedron Lett. 2006, 47, 5393.
15. Ghorai, M.; Das, K.; Kumar, A. Tetrahedron Lett. 2007, 48, 4373.
16. a) Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Tetrahedron Lett. 1966, 7, 5239. b) Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Tetrahedron 1968, 24, 3655.
17. a) Ito, K.; Katsuki, T. Chem. Lett. 1994, 1857. b) Ito, K.; Yoshitake, M.; Katsuki, T.; Heterocycles 1996, 42, 305. c) Ito, K.; Yoshitake, M.; Katsuki, T. Chem. Lett. 1995, 1027. d) Ito, K.; Fukuda, T.; Katsuki, T. Synlett 1997, 387. e) Ito, K.; Fukuda, T.; Katsuki, T. Heterocycles 1997, 46, 401.
18. Lo, M. M.-C.; Fu, G. C. Tetrahedron 2001, 57, 2621.
19. a) Wender, P. A.; Strand, D. J. Am. Chem. Soc. 2009, 131, 7528. b) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 45, 5021.
20. a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Ynamides: A Modern Functional Group for the New Millennium. Chem. Rev. 2010, 110, 5064. For partial reviews, see: b) Ackermann, L.; Potukuchi, H. K. Regioselective Syntheses of Fully-Substituted 1,2,3-Triazoles: The CuAAC/C-H Bond Functionalization Nexus. Org. Biomol. Chem. 2010, 8, 4503. c) Domínguez, G.; Perez-Castells, J. Recent Advances in [2+2+2] Cycloaddition Reactions. Chem. Soc. Rev. 2011, 40, 3430.
21. Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840.
22. Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
23. Karad, S. N.; Bhunia, S.; Liu, R.-S. Angew. Chem. 2012, 124, 8852. Angew. Chem. Int. Ed. 2012, 51, 8722.
24. See selected reviews: a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40. b) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. c) Sohel, S. M. A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
25. See selected reviews: a) A. K. Yudin in Aziridines and Epoxides in Organic Synthesis, Wiley-VCH, Weinheim, 2006. b) Gothelf, K. V.; Jorgensen, K. A. Chem. Rev. 1998, 98, 863. c) W. Carruthers in Cycloaddition in Organic Synthesis, Pergamon, Oxford, 1990, p. 1.
26. a) Ungureanu, I.; Klotz, P.; Mann, A. Angew. Chem. 2000, 112, 4790; Angew. Chem. Int. Ed. 2000, 39, 4615. b) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1991, 56, 3210. c) Madhushaw, R. J.; Hu, C.-C.; Liu, R.-S. Org. Lett. 2002, 4, 4151. d) Bergmeier, S. C.; Fundy, S. L.; Seth, P. P. Tetrahedron 1999, 55, 8025. e) Sugita, Y.; Kimura, Y.; Yokoe, I. Tetrahedron Lett. 1999, 40, 5877. f) Nakagawa, M.; Kawahara, M. Org. Lett. 2000, 2, 953. g) J.-G. Shim, Y. Yamamoto, J. Org. Chem. 1998, 63, 3067. h) Yadav, J. S.; Reddy, B. V. S.; Pandey, S. K.; Srihari, P. P.; Prathap, I. Tetrahedron Lett. 2001, 42, 9089.
27. a) Madhushaw, R. J.; Li, C.-L.; Hu, J.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123, 7427. b) Shen, K.-H.; Lush, S.-F.; Chen, T.-L.; Liu, R.-S. J. Org. Chem. 2001, 66, 8106. c) Hedley, S. W.; Moran, J.; Price, D. A.; Harrity, J. P. A. J. Org. Chem. 2003, 68, 4286.
28. a) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526. b) Miralda, C. M.; Macias, E. E.; Zhu, M.; Ratnasamy, P.; Carreon, M. A. ACS Catal. 2012, 2, 180.
29. a) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987, 109, 3792. b) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1988, 110, 7933. c) Larksarp, C.; Alper, H. J. Am. Chem. Soc. 1997, 119, 3709. d) Bez, G.; Zhao, C.-G. Org. Lett. 2003, 5, 4991. e) Zhou, Y.-Q.; Wang, N.-X.; Zhou, S.-B.; Huang, Z.; Cao, L. J. Org. Chem. 2011, 76, 669.
30. Review for the chemistry of oxetanes, see: Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49, 9053.
31. a) Baba, A.; Kashiwagi, H.; Matsuda, H. Tetrahedron Lett. 1985, 26, 1323. b) Fujiwara, M.; Imada, M.; Baba, A.; Matsuda, H. J. Org Chem 1988, 53, 5974. c) Baba, A.; Shibata, I.; Fujiwara, M.; Matsuda, H. Tetrahedron Lett. 1985, 26, 5167.
32. a) For [4+2]-cycloadditions of azetidines with alkenes, see Ungureanu, I.; Klotz, P.; Schoenfedler, A.; Mann, A. Chem. Commun. 2001, 958. b) Sun et al. reported a [6+2]-cycloaddition between 2-oxetanylbenzaldehyde and siloxyalkyne, see Zhao, W.; Wang, Z.; Sun, J. Angew. Chem. 2012, 124, 6313; Angew. Chem. Int. Ed. 2012, 51, 6209.
33. a) Davies, P.W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem. 2011, 123, 9093; Angew. Chem. Int. Ed. 2011, 50, 8931. b) Hashmi, A. S. K.; Buhrle, M.; Wolfle, M.; Rudolph, M. Wieteck, M.; Rominger, F.; Frey, W. Chem Eur. J. 2010, 16, 9846. c) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840.
34. a) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottander, M.; Gagosz, F.; Skrydstrup, T. Angew. Chem. 2011, 123, 5196; Angew. Chem. Int. Ed. 2011, 50, 8931. b) Li, C.; Zhang, L. Org. Lett. 2011, 131, 1738. c) Li, C.-W.; Pati, K.; Lin, G.-Y.; Sohel, S. M. A.; Hung, H.-H.; Liu, R.-S. Angew. Chem. 2010, 122, 10087; Angew. Chem. Int. Ed. 2012, 51, 113. d) Davies, P.W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379.
35. X-ray crystallographic data of compounds 2-3k, 2-5b, and 2-6a was deposited in Cambridge Crystallographic Data Center (CCDC for 2-3k-979491, 2-5b-979492, and 2-6a -979495).
chapter 3
1. See reviews: a) Boger, D. L. Chem. Rev. 1986, 86, 781. b) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741. c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668. d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. e) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew.Chem. Int. Ed. 1995, 34, 259. f) Trost, B. M. Science. 1991, 254, 1471. g) Benbow, J. F.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 12305. h) McClure, K.; Benbow, J. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1991, 113, 8185.
2. For reviews of gold-catalyzed cycloaddition reactions, a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. b) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. c) Shapiro, N. D.; Toste, F. D. Synlett 2010, 675.
3. a) Shortt, M. F.; Thomas, E. J. In Science of Synthesis, Vol. 10; Joule, J. A., Ed.; Georg Thieme: Stuttgart, 2000. b) Walsh, C. T.; Garneau- Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 23, 517. c) Higgins, S. J. Chem. Soc. Rev. 1997, 26, 247. d) Bullington, J. L.; Fan, X.; Jackson, P. F.; Zhang, Y.-M. PTC Int. Appl. 2004, WO 2004029040 A1 20040408. e) Curran, D.; Grimshaw, J.; Perera, S. D. Chem. Soc. Rev. 1991, 20, 391. f) Biavaa, M.; Porrettaa, G. C.; Manetti, F. Mini-Rev. Med. Chem. 2007, 7, 65. g) Katritzky, A. R. Comprehensive Heterocyclic Chemistry III, 1st ed.; Elsevier: Amsterdam, 2008. h) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264.
4. a) Curtius, T.; Ber. Dtsch. Chem. Ges. 1890, 23, 3023. b) Curtius, T. J. Prakt. Chem. 1894, 50, 275.
5. For reviews, see: a) Lang, S.; Murphy, J. A. Chem. Soc. Rev. 2006, 35, 146. b) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed. 2005, 44, 5188. c) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297. d) L’abbe, G. Chem. Rev. 1969, 69, 345. e) Boyer, J. H.; Canter, F. C. Chem. Rev. 1954, 54, 1. f) Smith, P. A. S. Org. React. 1946, 3, 337.
6. a) Medal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952. b) Schilling, C.; Jung, N.; Bräse, S. In Organic Azides: Syntheses and Applications; Bräse, S.; Banert, K., Eds.; John Wiley & Sons: Chichester, 2010, 269.
7. R. Huisgen, Angew. Chem. 1963, 75, 604; Angew. Chem. Int. Ed. Engl. 1963, 2, 565.
8. For reviews, see: a) Katsuki, T. Chem. Lett. 2005, 34, 1304. b) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.
9. a) Timén, Å. S.; Risberg, E.; Somfai, P. Tetrahedron Lett. 2003, 44, 5339. b) Söderberg, B. C. G. Curr. Org. Chem. 2000, 4, 727. c) Knittel, D. Synthesis 1985, 186.
10. a) Chiba , S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. Org. Lett. 2008, 10, 313. b) Ng, E. P. J.; Wang, Y.; Hui, B. W.-Q.; Lapointe, G.; Chiba, S. Tetrahedron 2011, 67, 7728.
11. Wang, Y.-F.; Toh, K. K.; Chiba, S. Org. Lett. 2008, 10, 5019.
12. Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Angew. Chem. Int. Ed. 2011, 50, 5927.
13. Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53, 5653.
14. Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
15. Pawar, S. K.; Vasu, D.; Liu, R.-S. Adv. Synth. Catal. 2014, 356, 2411.
16. Zhu, L. Y.; Yu, Z. M.; Huang, X. Org. Lett. 2015, 17, 30.
17. For metal-catalyzed cycloaddition reactions, see selected reviews: a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40. b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. c) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. e) López, F.; Mascareñas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. f) C. Aissa In Comprehensive Organic Synthesis II, Elsevier, P. Knochel; G. A. Molander Eds., 5.35, pp 1738. g) Mascareńas, J. L.; Lopez, G. F. In Comprehensive Organic Synthesis II, Elsevier, P. Knochel; G. A. Molander Eds., 5.13, pp 595.
18. a) The Chemistry of the Azido Group (Ed.: S. Patai), Wiley, New York USA, 1971. b) The Chemistry of Halides, Pseudo-halides and Azides, Supplement D, (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester UK 1983. c) Chemistry of Halides, Pseudo-Halides and Azides, Part 1 (Ed.: S. Patai), Wiley, Chichester UK, 1995. d) Azides and Nitrenes -Reactivity and Utility (Ed.: E. F. V. Scriven), Academic Press, New York USA, 1984.
19. a) Chiba, S. Synlett, 2012, 23, 21. b) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570. c) Loy, N. S. Y.; Singh, A.; Xu, X.; Park, C.-M. Angew. Chem. Int. Ed. 2013, 52, 2212; Angew. Chem. 2013, 125, 2268. d) Loy, N. S. Y.; Kim, S.; Park, C.-M. Org. Lett. 2015, 17, 395. e) Wang, Y.-F.; Toh, K. K.; Ng, E. P. J.; Chiba, S. J. Am. Chem. Soc. 2011, 133, 6411.
20. For metal-catalyzed transformations of 2H-azirines into pyrrole products, see selected examples: a) Filho, P. F. dos S.; Schuchardt, U. Angew. Chem. Int. Ed. 1977, 16, 647; Angew. Chem. 1977, 89, 672. b) Khlebnikov, A. F.; Golovkina, M. V.; Novikov, M. S.; Yufit, D. S. Org. Lett. 2012, 14, 3768. c) Jiang, Y.; Chan, W. C.; Park, C.- M. J. Am. Chem. Soc. 2012, 134, 4104. d) Qi, X.; Xu, X.; Park, C.-M. Chem. Commun. 2012, 48, 3996. e) Li, T.; Xin, X.; Wang, D.; Wang, C.; Wu, F.; Li, X.; Wan, B. Org. Lett. 2014, 16, 4806.
21. For gold-catalyzed intramolecular cyclizations of 2H-azirine with a tethered alkyne, see Prechter, A.; Henrion, G.; Bel, P. F.; Gagosz, F. Angew. Chem. Int. Ed. 2014, 53, 4959; Angew. Chem. 2014, 126, 5059.
22. a) Nitta, M.; Kobayashi, T. Chem. Lett. 1983, 1715. b) Nitta, M.; Kobayashi, T. Bull. Chem. Soc. Jpn. 1984, 57, 1035.
23. For gold catalyzed [4+3]-cycloadditions, see recent examples: a) Karad, S. N.; Bhunia, S. Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 8722; Angew. Chem. 2012, 124, 8852. b) Gulas, M.; Lopez, F.; Mascarenas, J. L. Pure Appl. Chem. 2011, 83, 495. c) Maulen, P.; Zeldin, R. M.; Gonzalez, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348. d) Alonso, I. ; Faustino, H.; Lopez, F.; Mascarenas, J. L. Angew. Chem. Int. Ed. 2011, 50, 11496; Angew. Chem. 2011, 123, 11698. e) Alonso, I.; Trillo, B.; Lopez, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledos, A.; Mascarenas, J. L. J. Am. Chem. Soc. 2009, 131, 13020. f) Wang, T.; Zhang, J. Chem. Eur. J. 2011, 17, 86. g) Zhang,Y.; Liu, F.; Zhang, L. Chem. Eur. J. 2010, 16, 6146.
24. X-ray crystallographic data of compounds 3-3c and 3-6a are deposited at Cambridge Crystallographic Data Center: 3-3c (CCDC 1042641) and 3-6a (CCDC 1042642).
chapter 4
1. a) Brummond, K. M.; Lu, J. J. Am. Chem. Soc. 1999, 121, 5087. b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. c) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. d) Fruhauf, H. W. Chem. Rev. 1997, 97, 523.
2. For selected examples, see: a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. b) Kablaouni, N. M.; Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 5818. c) Chatani, N.; Morimoto, T,; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 1996, 120, 5335. d) Shibata, T.; Toshida, N.; Takagi, K. Org. Lett. 2002, 4, 1619.
3. a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010 110, 704. b) Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219. c) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53. d) Fedoryński, M. Chem. Rev. 2003 103, 1099. e) Doering, W. E.; Hoffmann, A. K. J. Am. Chem. Soc. 1954, 76, 6162. f) Doering, W. von E.; Buttery, R. G.; Laughlin, R. G.; Chaudhure, N. J. Am. Chem. Soc. 1956, 78, 3224. g) Friedman, L.; Shechter, H. J. Am. Chem. Soc., 1960, 82, 1002.
4. For recent examples see: a) Ando, K. J. Org. Chem. 2010, 75, 8516. b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A. 2010, 114, 12893. d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720. e) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 2009, 1, 482.
5. Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226.
6. Zhang, L. Acc. Chem. Res. 2014, 47, 877.
7. Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
8. Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
9. Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
10. Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
11. Pawar, S. K.; Wang, C.-D.; Bhuniya, S.; Jadhav, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2013, 52, 7559.
12. Nosel, P.; Comprido, L. N. D.S.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2013, 135, 15662.
13. Rao, W.; Koh, M. J.; Li, D.; Hirao, H.; Chan P. W. H. J. Am. Chem. Soc. 2013, 135, 7926.
14. Lu, B.; Li, C.; Xhang, L. J. Am. Chem. Soc. 2010, 132, 14070.
15. For representative reviews on gold catalysis, see: a) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237. b) Hashmi, A. S. K. Gold Bull. 2003, 36, 3. c) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. d) Krause, N.; Hoffmann-Röder, A. Org. Biomol. Chem. 2005, 3, 387. e) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. f) Hashmi, A. S. K.; Hutchings, G. Angew. Chem., Int. Ed. 2006, 45, 7896. g) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. h) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. i) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. j) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. k) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. l) Arcadi, A. Chem. Rev. 2008, 108, 3266. m) Shen, H. C. Tetrahedron 2008, 64, 3885. n) Shen, H. C. Tetrahedron 2008, 64, 7847. o) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232.
16. Maters K.-S.; Wallesch M.; Brase, S. J. Org. Chem. 2011, 76, 9060.
17. a) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226. b) Blanco, M. C.; Hashmi, A. S. K. Modern Gold Catalyzed Synthesis; Hashmi, A. S. K.; Toste, F. D. Eds.; Wiley-VCH: Weinheim, 2012; Chapter 11, pp 273-295.
18. X-ray crystallographic data of compound 4-2h was deposited in Cambridge Crystallographic Data Center (CCDC for 4-2h:1409464).