簡易檢索 / 詳目顯示

研究生: 沙米爾
Samir Kundlik Pawar
論文名稱: 以過渡金屬催化合成具官能基碳環及異員環新途徑之發展
Development of New Synthetic Approaches to Access Functionalized Carbocycles and Heterocycles by Transition Metal Catalysis
指導教授: 劉瑞雄
Liu, Rai Shung
口試委員: 蔡易州
Tsai, Yi Chou
吳明忠
Wu, Ming Jung
侯敦仁
Hou, Duen Ren
陳銘洲
Chen, Ming Chou
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 539
中文關鍵詞: 金催化和環炔醯胺氧化加成異員環
外文關鍵詞: Gold-Catalyzed, Formal cycloaddition, Ynamides, oxidative cyclizations, Heterocycles
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract (Chinese)

    本文描述使用金與銀鹽類之有機合成轉換的新途徑之發展。藉由軟性親炔的金屬可使易取得的基質經由溫和、非對映選擇性、高效率地轉換成多種碳環、含氮或氧之雜環。為了更清楚地瞭解本文,本文分成四個章節。
    第一章主要探討2-乙炔基芐醚與有機氧化物透過金催化環加成反應合成1,3-二氫異衍生物。這類以1,3-二氫異苯基呋喃為核心的化合物是自然界中最常見的結構之一,且十分廣泛的被應用在重要的結構以及生物學中。這種產物的核心結構是通過[4+ 1]環-α-羰卡賓和系留式醚類所構成。該催化劑的效用包括對苯基和不同醚類的各種取代。
    第二章論述金以及銀催化炔醯胺、芳基氧雜環丁烷和芳基氮雜環丁烷進行一[4+2]環加成反應,形成六元雜環。氧雜環丁烷做為親核劑,而金--炔醯胺則為親電劑。在氮雜環丁烷的案例中,我們發現銀六氟銻比金催化劑更有效催化炔醯胺之[4+2]-環加成。此二環加成反應適用在合理的範圍內之炔醯胺、氧雜環丁烷以及氮雜環丁烷,進而表現其合成六元雜環之實用性,如6-氨基-3,4-二氫-2氫-吡喃和2-氨基-1,4,5,6-四氫吡啶。
    第三章介紹炔醯胺分別與2H-氮環丙烯、疊氮烯烴透過金催化進行環加成,得到兩個不同類別的[3+2]或[4+3]環加成物。炔醯胺與2H-氮環丙烯類的環加成反應可得到吡咯類產物。而對於苯基取代富含電子的炔醯胺,與疊氮烯烴通過新穎的[4+ 3]環加成反應來形成-1H-苯基-[d]-氮雜產物。
    第四章介紹透過共激活模式以1,6-二炔與-8-甲基喹啉N-氧化物合成出3-酮萘酚和3-酮基酚衍生物合成方法之發展。本反應的價值反應在其適用於廣泛的苯和非苯類衍生基質。


    Abstract
    This dissertation describes development of new synthetic organic transformations by using gold and silver salts. The use of these soft alkynophilic metals enables mild, diastereoselective and efficient transformations of a variety of readily available substrates to wide range of synthetically useful carbocyclic and nitrogen or oxygen containing heterocyclic products. For better understanding the thesis is divided into four chapters.
    The first chapter deals with the Gold-catalyzed reactions of 2-ethynylbenzyl ethers with organic oxides for synthesis of 1,3-dihydroisobenzofuran derivatives through a formal cycloaddition reaction. Such 1,3-dihydroisobenzofuran core is one of the most commonly encountering skeletons in nature and the core scaffold has a wide spread application in structural and biological importance. The core structures of the resulting products are constructed through a formal [4+1] cycloaddition among α-carbonyl carbenoids and tethered ethers. The utility of this catalysis includes various substituents on phenyl groups and different ethers.

    The second chapter deals with the Gold- and Silver-catalyzed [4+2] cycloaddition reactions of ynamides with aryl-oxetanes and aryl-azetidines to form six membered heterocycles. Oxetanes function as nucleophiles whereas gold--ynamides are present as electrophiles. In the case of azetidines, silver hexafluoroantimonate was found to be more active than gold catalyst in their [4+2]-cycloadditions with ynamides. The two cycloadditions are applicable to a reasonable range of ynamides, oxetanes and azetidines, thus manifesting their synthetic utility to access six-membered heterocycles such as 6-amino-3,4-dihydro-2H-pyrans and 2-amino-1,4,5,6-tetrahydropyridines.


    The third chapter describes the Gold-catalyzed cycloadditions of ynamides with azidoalkenes or 2H-azirines to give [3+2] or [4+3] formal cycloadducts of two different classes. Cycloadditions of ynamides with 2H-azirine species afford pyrrole products. For ynamides substituted with an electron-rich phenyl group, their reactions with azidoalkenes proceed through novel [4+3] cycloadditions to deliver 1H-benzo[d]azepine products instead.

    The fourth chapter presents development of a oxidative cyclizations of 1,6 diynes with 8-methylquinoline N-oxides through dual activation mode to achieve 3-keto naphthols and 3-keto phenol derivatives. The value of the reaction is reflected by their applicability to a broad range of benzene- and nonbenzene-derived substrates.

    Contents Acknowledgement IV Abstract VI List of Schemes IX List of Table XIII List of Figures XIV List of Publications XV Abbreviations XVI Chapter I: Gold-Catalyzed Formal Cycloadditions of 2-Ethynylbenzyl Ethers with Organic Oxides. Introduction 2 Results and Discussion 10 Conclusion 17 Experimental Procedure 18 Spectroscopic Data 23 Reference 35 HPLC Data 40 1H and 13C NMR Spectra 43 Chapter II: Gold- and Silver-catalyzed [4+2] Cycloadditions of Ynamides with Oxetanes and Azetidines. Introduction 118 Results and Discussion 126 Conclusion 137 Experimental Procedure 137 Spectroscopic Data 141 Reference 160 X-ray Crystallographic Data 165 1H and 13C NMR Spectra 184 Chapter III: Diversity in Gold-catalyzed Formal Cycloadditions of Ynamides with Azidoalkenes or 2H-Azirines: [3+2]- Versus [4+3]-Cycloadditions. Introduction 273 Results and Discussion 281 Conclusion 292 Experimental Procedure 292 Spectroscopic Data 296 Reference 313 X-ray Crystallographic Data 316 1H and 13C NMR Spectra 336 Chapter IV: Gold Catalyzed Oxidative Cyclizations of 1,6 Diynes : Synthesis of 3-keto naphthols or 3-keto phenol derivatives. Introduction 432 Results and Discussion 439 Conclusion 446 Experimental Procedure 446 Spectroscopic Data 450 Reference 462 X-ray Crystallographic Data 464 1H and 13C NMR Spectra 470 List of Schemes Chapter I Scheme 1: Intramolecular and intermolecular approach to access -oxo gold 4 carbenes from alkynes Scheme 2: Rearrangement alkynyl sulfoxides catalyzed by gold(I) complexes 5 Scheme 3: Synthesis of tetrahydrobenz[b]azepin-4-ones via intramolecular 5 -oxo gold carbenoid generation Scheme 4: First example of accessing -oxo gold carbenes via intermolecular 6 oxidation of terminal alkynes Scheme 5: Gold catalyzed synthesis of oxetan-3-ones from propargylic alcohols 6 Scheme 6: Gold-catalyzed [2+2+1] annulation of alkynes to synthesize 2,5 7 disubstituted oxazoles. Scheme 7: Oxidative cyclization of 1,5 enyne via 5-exo dig mode 7 Scheme 8: Oxidative cyclization of 1,5 enyne via 5-endo dig mode 8 Scheme 9: Gold(I)-catalyzed intramolecular cycloaddition of alkynes 8 Scheme 10: Gold catalyzed intermolecular (4+2) cycloaddition of 9 o-alkynylbenzaldehydes with external alkynes Scheme 11: Gold(I)-catalyzed formal cycloaddition of ethynylbenzyl ethers 1-1 with 9 8-methylquinoline N-oxide Scheme 12: Gold(I)-catalyzed carboalkoxylation of ethynylbenzyl ethers 1 10 Scheme 13: Preparation of 1-(dimethoxymethyl)-2-ethynylbenzene (1-1a) 12 Scheme 14: Trapping of α-oxo carbene intermediacy 15 Scheme 15: Chirality transfer experiment 16 Scheme 16: A proposed mechanism for formal cycloadditions 17 Chapter II Scheme 1: Palladium catalyzed cycloadditions of azetidines with carbodiimides 119 Scheme 2: BF3.Et2O catalyzed [4+2] cycloadditions of azitidines with electron 120 rich alkenes Scheme 3: BF3.Et2O catalyzed [4+2] cycloaddition reactions of azetidines 120 with nitriles Scheme 4: Zn(OTf)2 catalyzed [4+2] cycloaddition reactions of azetidines with nitriles 121 Scheme 5: Cu(OTf)2 mediated [4+2] cycloaddition reactions of azetidines with 121 various aldehydes Scheme 6: Asymmetric ring expansion of oxetanes according to Katsuki and 122 co-workers Scheme 7: Ring expansion of asymmetric oxetanes according to Lo and Fu. 122 Scheme 8: [3+2]-Cycloadditions of alkynes with aziridines 123 Scheme 9: FeCl3-catalyzed [3+2] cycloadditions of aziridines with arylalkynes 123 Scheme 10: Interactions of ynamides with gold catalysts 124 Scheme 11: Gold-catalyzed [4+2] cycloadditions of ynamides with alkenes 124 Scheme 12: Gold catalyzed [4+3]-cycloadditions of ynamides with epoxides 125 Scheme 13: Gold catalyzed [4+2]-cycloadditions of ynamides with four 126 membered ring heterocycles Scheme 14: General synthetic procedure for synthesis of ynamide (2-1a) 128 Scheme 15: Functinalizations of heterocycles 2-3a and 2-5a 135 Scheme 16: Plausible mechanisms for [4+2] cycloadditions 135 Chapter III Scheme 1: Activities of organic azides as 1,3 dipoles and nitrene equivalents 274 Scheme 2: Thermolysis of vinyl azides into 2H-azirines 274 Scheme 3: Synthesis of polysubstituted pyrroles by simple heating of vinyl azides 275 and 1,3-dicarbonyl compounds Scheme 4: Manganese(III)-catalyzed formal [3+2]-annulation of vinyl azides with 276 1,3-dicarbonyl compounds Scheme 5: Synthesis of highly substituted isoquinolines from -aryl vinyl azides and 276 internal alkynes Scheme 6: Metal free visible-light-induced formal [3+2] cycloaddition for synthesis 277 of pyrroles Scheme 7: Behavior of ynamides with gold catalysts 278 Scheme 8: Gold-catalyzed [4+2] and [2+2+2] cycloadditions of ynamides with 278 alkenes Scheme 9: Gold catalyzed [4+2]-cycloadditions of ynamides with oxetanes and 279 azetidines Scheme 10: Gold catalyzed [3+2]-cycloadditions of ynamides with 2H-azirines 280 Scheme 11: Gold catalyzed [3+2] Vs [4+3]-cycloadditions of ynamides with vinyl 281 azides Scheme 12: General synthetic procedure for synthesis of ynamide (3-1a) 283 Scheme 13: General synthetic procedure for synthesis of vinyl azide (3-2a) 284 Scheme 14: The formal [3+2] and [4+3] cycloadditions of ynamides 3-1a and 3-5g 289 with 2H-azirine Scheme 15: Proposed reaction mechanisms for diverse products 290 Scheme 16: Exclusion of possibility of gold carbene intermediacy 291 Chapter IV Scheme 1: Intramolecular and intermolecular approach to access -oxo gold 433 carbenes from alkynes Scheme 2: Rearrangement alkynyl sulfoxides catalyzed by gold(I) complexes 434 Scheme 3: Synthesis of tetrahydrobenz[b]azepin-4-ones via intramolecular -oxo gold 434 carbenoid generation Scheme 4: First example of accessing -oxo gold carbenes via intermolecular oxidation 435 of terminal alkynes Scheme 5: Gold catalyzed synthesis of oxetan-3-ones from propargylic alcohols 435 Scheme 6: Gold catalyzed oxidative cyclization of ethynylbenzyl ethers with 436 8-methylquinoline N-oxide Scheme 7: Gold-Catalyzed Oxidative Diyne Cyclizations 436 Scheme 8: Gold-catalyzed cycloisomerization of 1,6-diyne carbonates and esters to 437 2,4a-dihydro‑1H‑fluorenes Scheme 9: Gold-catalyzed oxidation of internal alkynes to access enone derivatives 438 Scheme 10: Gold(I)-catalyzed oxidative cyclizations of 1,6 diynes 4-1 with 438 8-methylquinoline N-oxide Scheme 11: General synthetic procedure for synthesis of 1,6 diynes (4-1a) 441 Scheme 12: General synthetic procedure for synthesis of 1,6 diynes (4-1j and 4-1k) 441 Scheme 13: Plausible mechanism for oxidative cyclization of 1,6 diyne 445 List of Tables Chapter I Table 1: Gold-catalyzed cycloaddition of 2-ethynylphenylacetal (1-1a) over 11 various catalysts Table 2: Reaction scope for various acetal substrates 1-1 13 Chapter II Table 1: Condition optimization for cycloaddition of ynamides with oxetanes 126 Table 2: Reaction scope of cycloadditions between ynamide 2-1 and oxetanes 2-2 129 Table 3: Condition optimization for cycloaddition of ynamides with azetidines 132 Table 4: Reaction scope of cycloadditions between ynamide 2-1 and azetidines 2-4 133 Chapter III Table 1: Condition optimization for formal cycloadditions of ynamides with 282 vinyl azides Table 2: Scope of the gold-catalyzed [3+2] cycloadditions of various ynamides with 285 vinyl azides Table 3: Scope of the gold-catalyzed [4+3] cycloadditions of various ynamides with 287 vinyl azides Chapter IV Table 1: Condition optimization for oxidative cyclizations of 1,6 diynes 439 Table 2: The scope of gold-catalyzed oxidative cyclizations of 1,6 diynes 442 List of Figures Chapter I Figure 1: Singlet and triplet carbenes 2 Figure 2: Fischer and schrock carbenes 3 Figure 3: List of Substrates 12 Figure 4: Bioactive compounds bearing dihydroisobenzofuran structure 18 Chapter II Figure 1: List of substrates 127 Figure 2: ORTEP diagram of compound 2-3k, 2-5b and 2-6a 136 Chapter III Figure 1: List of substrates 283 Figure 2: ORTEP diagrams of 2-3c and 2-6a 291 Chapter IV Figure 1: List of substrates 440 Figure 1: ORTEP diagram of compound 4-2h 445

    Chapter I
    1. a) Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; T. Hudlicky, Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1. b) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
    2. a) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002. b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
    3. a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. c) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
    4. a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. c) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. d) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029. e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. f) For cyclization of allenynes with nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596. g) Gorin, D. J.; Dube, P.;Toste, F. D. J. Am.Chem. Soc. 2006, 128, 14480.
    5. a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
    6. a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. b) Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975. c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
    7. a) Hutchings, G. J. Gold Bull. 1996, 29, 123. b) Hutchings, G. J. Catal. Today, 2002, 72, 11.
    8. Reviews for gold-catalyzed annulation or cycloaddition reactions, a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. b) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, 5, 6. c) Abu Sohel, S. Md.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. d) Fürstner, A.; Davies, P. W. Angew Chem. Int. Ed. 2007, 46, 3410. e) Shapiro, N. D.; Toste, F. D. Synlett, 2010, 675.
    9. a) Soriano, E.; J. Marco-Contelles. Acc. Chem. Res. 2009, 42, 1026. b) Lee, S. I.; N. Chatani. Chem. Commun. 2009, 371. c) Kirsch S. F. Synthesis 2008, 3183. d) Muzart. J. Tetrahedron, 2008, 64, 5815. e) Widenhoefer R. A. Chem. Eur. J. 2008, 14, 5382.
    10. a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47, 6754. b) Bongers, N.; Krause. N. Angew. Chem. Int. Ed. 2008, 47, 2178. c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. d) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657.
    11. a) Boorman, T. C.; Larrosa. I. Chem. Soc. Rev. 2011, 40, 1910. b) Bandini. M. Chem. Soc. Rev. 2011, 40, 1358. c) Krause, N.; Winter. C. Chem. Rev. 2011, 111, 1994. d) Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405. e) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536. f) Das, A.; Sohel, S. M. A.; Liu, R.-S. Org. Biomol. Chem. 2010, 8, 960.
    12. For recent examples see: a) Ando, K. J. Org. Chem. 2010, 75, 8516. b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A. 2010, 114, 12893. d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720. e) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 2009, 1, 482.
    13. Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226.
    14. Zhang, L. Acc. Chem. Res. 2014, 47, 877.
    15. Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
    16. Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
    17. Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
    18. Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
    19. He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
    20. Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu. R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911.
    21. a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2010, 49, 5232. A similar mechanism was proposed for the Pt catalyzed process, see: b) Martín-Matute, B.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2001, 40, 4754. c) Martín-Matute, B.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757. d) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553. e) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wölfle, M.; Frey, W.; Bats, J. W. Angew. Chem. Int. Ed. 2005, 44, 2798.
    22. a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. b) Straub, B. F. Chem. Commun. 2004, 1726.
    23. For metal-catalyzed cycloaddition reactions, see selected reviews: a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40. b) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791; Reviews for gold-catalyzed cycloaddition reactions, see: a) López, F.; Mascareñas, J. L. Beilstein, J. Org. Chem. 2011, 7, 1075. b) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954. c) Garayalde, D.; Nevado, C. ACS. Catal. 2012, 2, 1462.
    24. a) Mandai, T.; Tsuji, J.; Tsujiguchi, Y.; Saito, S. J. Am. Chem. Soc. 1993, 115, 5865. b) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 2950. c) Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9690. d) Eaton, B. E.; Eollman, B. J. Am. Chem. Soc. 1992, 114, 6245. e) Sigman, M. S.; Eaton, B. E. J. Am. Chem. Soc. 1996, 118, 11783.
    25. a) Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 11313. b) Danheiser, R. L.; Gould, A. E.; Predilla, R. Fernandez de la; Helgason, A. L. J. Org. Chem. 1994, 59, 5514. c) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. d) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
    26. a) Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012, 14, 692. b) Lin, M.; Li, F.; Jiao, L.; Yu, Z.-X. J. Am. Chem. Soc. 2011, 133, 1690. c) Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Tang, W. Angew. Chem. Int. Ed. 2011, 50, 1346. d) Kamitani, A.; Chatani, N.; Moromoto, T.; Murai, S. J. Org. Chem. 2000, 65, 9230.
    27. a) Brancour, C.; Kukuyama, T.; Ohta, Y.; Ryu, I.; Dhimane, A.-L.; Fenterbank, L.; Malacria, M. Chem. Commun. 2010, 46, 5470. b) Kukuyama, T.; Ohta, Y.; Brancour, C.; Miyagawa, K.; Ryo, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Chem. Eur. J. 2012, 18, 7243.
    28. For metal-catalyzed carboalkoxylations of alkynes; see selected examples: a) Dubé, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062. b) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. c) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. d) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546. f) Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 15022.
    29. Braga, A. L.; Ludrke, D. S.; Vargas, F.; Paixáo, M. W. Chem. Commun. 2005, 2512.
    30. Species (R)-(+)-1-2k (93.9 % ee) was treated with ozone to give (R)-(- )-1-5a ([] = -39.6, CHCl3). This R-enantiomer was reported to have [] = -48.6 in CHCl3; see Ramachandran, P. V.; Chen, G.-M.; Brown, H. C. Tetrahedron Lett. 1996, 37, 2205.

    31. Selected examples: a) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 132, 14070. b) Dateer, R.-B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
    32. Karad, S. N.; Bhunia, S.; Liu, R.-S. Angew. Chem. 2012, 124, 8852; Angew. Chem. Int. Ed. 2012, 51, 8722.
    33. We exclude a double inversion mechanism for the retention of stereochemistry; this process presumably involves the attack of OTf- on intermediate D in Scheme 22. However, the use of LAuSbF6 on R-(+)-1-k (90.5 %) gave desired R-(-)-1-2k with 90.5 % ee, thus excluding its possibility.
    34. a) Harper, J. K.; Arif, A. M.; Ford, E. J.; Strobel, G. A.; Porco, J. A. Jr.; Tomer, D. P.; Oneill, K. L.; Heider E. M.; Grant, D. M. Tetrahedron. 2003, 59, 2471. b) Moore, N.; Verdoux, H.; Fantino, B. Int. Clin. Psychopharmacol. 2005, 20, 131. c) Andrews, S. W.; Guo, X.; Zhu, Z.; Hull, C. E.; Wurster, J. A.; Wang, S.; Wang, E. H.; Malone, T. US Pat. USXXCO US 20060004084 A1 20060105, CAN 144: 108205, An 2006: 14038., 2006, p. 316. d) Lin, G.; Chan, S. S.-K.; Chung, H.-S.; Li, S.-L. in Studies in Natural Products Chemistry, Vol. 32 (Ed.: Atta-ur-Rahman), Elsevier, Amsterdam, 2005, pp. 611. e) Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213.

    Chapter 2
    1. See reviews: a) Boger, D. L. Chem. Rev. 1986, 86, 781. b) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741. c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668. d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. e) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew.Chem. Int. Ed. 1995, 34, 259. f) Trost, B. M. Science. 1991, 254, 1471. g) Benbow, J. F.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 12305. h) McClure, K.; Benbow, J. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1991, 113, 8185.
    2. a) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845. b) Martin, J. N.; Jones, R. C. F.; Padwa, A.; Pearson, W. H. John Wiley & Sons: Hoboken, NJ, 2003; Chapter 1. c) Gothelf, K. V.; Kobayashi, S.; Jørgensen, K. A. Wiley-VCH: Weinheim, Germany, 2002; Chapter 6. d) Kanemasa, S.; Kobayashi, S.; Jørgensen, K. A. Wiley-VCH: Weinheim, Germany, 2002; Chapter 7.
    3. a) Undheim, K. T. Benneche, in Comprehensive Heterocyclic Chemistry II, Vol. 6 (Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; McKillop A.), Pergamon, Oxford, 1996, p. 93. b) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. c) Joule, J. A.; Mills, K. in Heterocyclic Chemistry, 4th ed., Blackwell, Cambridge, 2000, p. 194. d) Erian, A.W. Chem. Rev. 1993, 93, 1991.
    4. a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. d) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. e) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. f) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. g) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. h) Shen, H. C. Tetrahedron 2008, 64, 7847.
    5. a)Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. b) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. c) Jiménez-Nuñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. d) Michelet, V.; Toullec, P. Y.; Genêt, J. P. Angew. Chem. Int. Ed. 2008, 47, 4268.
    6. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
    7. a) Fowden, L. Nature 1955, 176, 347. b) Bannon, A. W.; Decker, M. W.; Holladay, M. W.; Curzon, P.; Donnelly-Roberts, D.; Puttfarcken, P. S.; Bitner, R. S.; Diaz, A.; Dickenson, A. H.; Porsolt, R. D.; Williams, M.; Arneric, S. P. Science 1998, 279, 77.
    8. a) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Salgado, N. R. J. Org. Chem. 1999, 64, 9596.
    9. a) Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1994, 50, 5775. b) Akiyama, T.; Daidouji, K.; Fuchibe, K. Org. Lett. 2003, 5, 3691. c) Domostoj, M.; Ungureanu, I.; Schoenfelder, A.; Klotz, P.; Mann, A. Tetrahedron Lett. 2006, 47, 2205. d) Vargas-Sanchez, M.; Couty, F.; Evano, G.; Prim, D.; Marrot, J. Org. Lett. 2005, 7, 5861. e) Van Brabandt, W.; Landeghem, R. V.; De Kimpe, N. Org. Lett. 2006, 8, 1105. f) Golding, P.; Millar, R. W.; Paul, N. C.; Richards, D. H. Tetrahedron 1995, 51, 5073. g) Vanecko, J. A.; West, F. G. Org. Lett. 2005, 7, 2949. h) Mullis, J. C.; Weber, W. P. J. Org. Chem. 1982, 47, 2873. i) Carr, S. A.; Weber, W. P. J. Org. Chem. 1985, 50, 2782.
    10. a) Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Chem. Commun. 2001, 958. b) Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Tetrahedron Lett. 2001, 42, 6087. c) Prasad, B. A. B.; Bisai, A.; Singh, V. K. Org. Lett. 2004, 6, 4829. d) Yadav, V. K.; Sriramurthy, V. J. Am. Chem. Soc. 2005, 127, 16366.
    11. a) Baeg, J.-O.; Bensimon, C.; Alper, H. J. Org. Chem. 1995, 60, 253. b) Baeg, J.-O.; Alper, H. J. Org. Chem. 1995, 60, 3092.
    12. Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Tetrahedron Lett. 2001, 42, 6087.
    13. Prasad, B. A. B.; Bisai, A.; Singh, V. K. Org. Lett. 2004, 26, 4829.
    14. Ghorai, M.; Das, K.; Kumar, A.; Das, A. Tetrahedron Lett. 2006, 47, 5393.
    15. Ghorai, M.; Das, K.; Kumar, A. Tetrahedron Lett. 2007, 48, 4373.
    16. a) Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Tetrahedron Lett. 1966, 7, 5239. b) Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Tetrahedron 1968, 24, 3655.
    17. a) Ito, K.; Katsuki, T. Chem. Lett. 1994, 1857. b) Ito, K.; Yoshitake, M.; Katsuki, T.; Heterocycles 1996, 42, 305. c) Ito, K.; Yoshitake, M.; Katsuki, T. Chem. Lett. 1995, 1027. d) Ito, K.; Fukuda, T.; Katsuki, T. Synlett 1997, 387. e) Ito, K.; Fukuda, T.; Katsuki, T. Heterocycles 1997, 46, 401.
    18. Lo, M. M.-C.; Fu, G. C. Tetrahedron 2001, 57, 2621.
    19. a) Wender, P. A.; Strand, D. J. Am. Chem. Soc. 2009, 131, 7528. b) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 45, 5021.
    20. a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Ynamides: A Modern Functional Group for the New Millennium. Chem. Rev. 2010, 110, 5064. For partial reviews, see: b) Ackermann, L.; Potukuchi, H. K. Regioselective Syntheses of Fully-Substituted 1,2,3-Triazoles: The CuAAC/C-H Bond Functionalization Nexus. Org. Biomol. Chem. 2010, 8, 4503. c) Domínguez, G.; Perez-Castells, J. Recent Advances in [2+2+2] Cycloaddition Reactions. Chem. Soc. Rev. 2011, 40, 3430.
    21. Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840.
    22. Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
    23. Karad, S. N.; Bhunia, S.; Liu, R.-S. Angew. Chem. 2012, 124, 8852. Angew. Chem. Int. Ed. 2012, 51, 8722.
    24. See selected reviews: a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40. b) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. c) Sohel, S. M. A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
    25. See selected reviews: a) A. K. Yudin in Aziridines and Epoxides in Organic Synthesis, Wiley-VCH, Weinheim, 2006. b) Gothelf, K. V.; Jorgensen, K. A. Chem. Rev. 1998, 98, 863. c) W. Carruthers in Cycloaddition in Organic Synthesis, Pergamon, Oxford, 1990, p. 1.
    26. a) Ungureanu, I.; Klotz, P.; Mann, A. Angew. Chem. 2000, 112, 4790; Angew. Chem. Int. Ed. 2000, 39, 4615. b) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1991, 56, 3210. c) Madhushaw, R. J.; Hu, C.-C.; Liu, R.-S. Org. Lett. 2002, 4, 4151. d) Bergmeier, S. C.; Fundy, S. L.; Seth, P. P. Tetrahedron 1999, 55, 8025. e) Sugita, Y.; Kimura, Y.; Yokoe, I. Tetrahedron Lett. 1999, 40, 5877. f) Nakagawa, M.; Kawahara, M. Org. Lett. 2000, 2, 953. g) J.-G. Shim, Y. Yamamoto, J. Org. Chem. 1998, 63, 3067. h) Yadav, J. S.; Reddy, B. V. S.; Pandey, S. K.; Srihari, P. P.; Prathap, I. Tetrahedron Lett. 2001, 42, 9089.
    27. a) Madhushaw, R. J.; Li, C.-L.; Hu, J.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123, 7427. b) Shen, K.-H.; Lush, S.-F.; Chen, T.-L.; Liu, R.-S. J. Org. Chem. 2001, 66, 8106. c) Hedley, S. W.; Moran, J.; Price, D. A.; Harrity, J. P. A. J. Org. Chem. 2003, 68, 4286.
    28. a) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526. b) Miralda, C. M.; Macias, E. E.; Zhu, M.; Ratnasamy, P.; Carreon, M. A. ACS Catal. 2012, 2, 180.
    29. a) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987, 109, 3792. b) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1988, 110, 7933. c) Larksarp, C.; Alper, H. J. Am. Chem. Soc. 1997, 119, 3709. d) Bez, G.; Zhao, C.-G. Org. Lett. 2003, 5, 4991. e) Zhou, Y.-Q.; Wang, N.-X.; Zhou, S.-B.; Huang, Z.; Cao, L. J. Org. Chem. 2011, 76, 669.
    30. Review for the chemistry of oxetanes, see: Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49, 9053.
    31. a) Baba, A.; Kashiwagi, H.; Matsuda, H. Tetrahedron Lett. 1985, 26, 1323. b) Fujiwara, M.; Imada, M.; Baba, A.; Matsuda, H. J. Org Chem 1988, 53, 5974. c) Baba, A.; Shibata, I.; Fujiwara, M.; Matsuda, H. Tetrahedron Lett. 1985, 26, 5167.
    32. a) For [4+2]-cycloadditions of azetidines with alkenes, see Ungureanu, I.; Klotz, P.; Schoenfedler, A.; Mann, A. Chem. Commun. 2001, 958. b) Sun et al. reported a [6+2]-cycloaddition between 2-oxetanylbenzaldehyde and siloxyalkyne, see Zhao, W.; Wang, Z.; Sun, J. Angew. Chem. 2012, 124, 6313; Angew. Chem. Int. Ed. 2012, 51, 6209.
    33. a) Davies, P.W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem. 2011, 123, 9093; Angew. Chem. Int. Ed. 2011, 50, 8931. b) Hashmi, A. S. K.; Buhrle, M.; Wolfle, M.; Rudolph, M. Wieteck, M.; Rominger, F.; Frey, W. Chem Eur. J. 2010, 16, 9846. c) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840.
    34. a) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottander, M.; Gagosz, F.; Skrydstrup, T. Angew. Chem. 2011, 123, 5196; Angew. Chem. Int. Ed. 2011, 50, 8931. b) Li, C.; Zhang, L. Org. Lett. 2011, 131, 1738. c) Li, C.-W.; Pati, K.; Lin, G.-Y.; Sohel, S. M. A.; Hung, H.-H.; Liu, R.-S. Angew. Chem. 2010, 122, 10087; Angew. Chem. Int. Ed. 2012, 51, 113. d) Davies, P.W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379.
    35. X-ray crystallographic data of compounds 2-3k, 2-5b, and 2-6a was deposited in Cambridge Crystallographic Data Center (CCDC for 2-3k-979491, 2-5b-979492, and 2-6a -979495).

    chapter 3
    1. See reviews: a) Boger, D. L. Chem. Rev. 1986, 86, 781. b) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741. c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668. d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. e) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew.Chem. Int. Ed. 1995, 34, 259. f) Trost, B. M. Science. 1991, 254, 1471. g) Benbow, J. F.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 12305. h) McClure, K.; Benbow, J. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1991, 113, 8185.
    2. For reviews of gold-catalyzed cycloaddition reactions, a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. b) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. c) Shapiro, N. D.; Toste, F. D. Synlett 2010, 675.
    3. a) Shortt, M. F.; Thomas, E. J. In Science of Synthesis, Vol. 10; Joule, J. A., Ed.; Georg Thieme: Stuttgart, 2000. b) Walsh, C. T.; Garneau- Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 23, 517. c) Higgins, S. J. Chem. Soc. Rev. 1997, 26, 247. d) Bullington, J. L.; Fan, X.; Jackson, P. F.; Zhang, Y.-M. PTC Int. Appl. 2004, WO 2004029040 A1 20040408. e) Curran, D.; Grimshaw, J.; Perera, S. D. Chem. Soc. Rev. 1991, 20, 391. f) Biavaa, M.; Porrettaa, G. C.; Manetti, F. Mini-Rev. Med. Chem. 2007, 7, 65. g) Katritzky, A. R. Comprehensive Heterocyclic Chemistry III, 1st ed.; Elsevier: Amsterdam, 2008. h) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264.
    4. a) Curtius, T.; Ber. Dtsch. Chem. Ges. 1890, 23, 3023. b) Curtius, T. J. Prakt. Chem. 1894, 50, 275.
    5. For reviews, see: a) Lang, S.; Murphy, J. A. Chem. Soc. Rev. 2006, 35, 146. b) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed. 2005, 44, 5188. c) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297. d) L’abbe, G. Chem. Rev. 1969, 69, 345. e) Boyer, J. H.; Canter, F. C. Chem. Rev. 1954, 54, 1. f) Smith, P. A. S. Org. React. 1946, 3, 337.
    6. a) Medal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952. b) Schilling, C.; Jung, N.; Bräse, S. In Organic Azides: Syntheses and Applications; Bräse, S.; Banert, K., Eds.; John Wiley & Sons: Chichester, 2010, 269.
    7. R. Huisgen, Angew. Chem. 1963, 75, 604; Angew. Chem. Int. Ed. Engl. 1963, 2, 565.
    8. For reviews, see: a) Katsuki, T. Chem. Lett. 2005, 34, 1304. b) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.
    9. a) Timén, Å. S.; Risberg, E.; Somfai, P. Tetrahedron Lett. 2003, 44, 5339. b) Söderberg, B. C. G. Curr. Org. Chem. 2000, 4, 727. c) Knittel, D. Synthesis 1985, 186.
    10. a) Chiba , S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. Org. Lett. 2008, 10, 313. b) Ng, E. P. J.; Wang, Y.; Hui, B. W.-Q.; Lapointe, G.; Chiba, S. Tetrahedron 2011, 67, 7728.
    11. Wang, Y.-F.; Toh, K. K.; Chiba, S. Org. Lett. 2008, 10, 5019.
    12. Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Angew. Chem. Int. Ed. 2011, 50, 5927.
    13. Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53, 5653.
    14. Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. 2012, 124, 117; Angew. Chem. Int. Ed. 2012, 51, 113.
    15. Pawar, S. K.; Vasu, D.; Liu, R.-S. Adv. Synth. Catal. 2014, 356, 2411.
    16. Zhu, L. Y.; Yu, Z. M.; Huang, X. Org. Lett. 2015, 17, 30.
    17. For metal-catalyzed cycloaddition reactions, see selected reviews: a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40. b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. c) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. e) López, F.; Mascareñas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. f) C. Aissa In Comprehensive Organic Synthesis II, Elsevier, P. Knochel; G. A. Molander Eds., 5.35, pp 1738. g) Mascareńas, J. L.; Lopez, G. F. In Comprehensive Organic Synthesis II, Elsevier, P. Knochel; G. A. Molander Eds., 5.13, pp 595.
    18. a) The Chemistry of the Azido Group (Ed.: S. Patai), Wiley, New York USA, 1971. b) The Chemistry of Halides, Pseudo-halides and Azides, Supplement D, (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester UK 1983. c) Chemistry of Halides, Pseudo-Halides and Azides, Part 1 (Ed.: S. Patai), Wiley, Chichester UK, 1995. d) Azides and Nitrenes -Reactivity and Utility (Ed.: E. F. V. Scriven), Academic Press, New York USA, 1984.
    19. a) Chiba, S. Synlett, 2012, 23, 21. b) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570. c) Loy, N. S. Y.; Singh, A.; Xu, X.; Park, C.-M. Angew. Chem. Int. Ed. 2013, 52, 2212; Angew. Chem. 2013, 125, 2268. d) Loy, N. S. Y.; Kim, S.; Park, C.-M. Org. Lett. 2015, 17, 395. e) Wang, Y.-F.; Toh, K. K.; Ng, E. P. J.; Chiba, S. J. Am. Chem. Soc. 2011, 133, 6411.
    20. For metal-catalyzed transformations of 2H-azirines into pyrrole products, see selected examples: a) Filho, P. F. dos S.; Schuchardt, U. Angew. Chem. Int. Ed. 1977, 16, 647; Angew. Chem. 1977, 89, 672. b) Khlebnikov, A. F.; Golovkina, M. V.; Novikov, M. S.; Yufit, D. S. Org. Lett. 2012, 14, 3768. c) Jiang, Y.; Chan, W. C.; Park, C.- M. J. Am. Chem. Soc. 2012, 134, 4104. d) Qi, X.; Xu, X.; Park, C.-M. Chem. Commun. 2012, 48, 3996. e) Li, T.; Xin, X.; Wang, D.; Wang, C.; Wu, F.; Li, X.; Wan, B. Org. Lett. 2014, 16, 4806.
    21. For gold-catalyzed intramolecular cyclizations of 2H-azirine with a tethered alkyne, see Prechter, A.; Henrion, G.; Bel, P. F.; Gagosz, F. Angew. Chem. Int. Ed. 2014, 53, 4959; Angew. Chem. 2014, 126, 5059.
    22. a) Nitta, M.; Kobayashi, T. Chem. Lett. 1983, 1715. b) Nitta, M.; Kobayashi, T. Bull. Chem. Soc. Jpn. 1984, 57, 1035.
    23. For gold catalyzed [4+3]-cycloadditions, see recent examples: a) Karad, S. N.; Bhunia, S. Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 8722; Angew. Chem. 2012, 124, 8852. b) Gulas, M.; Lopez, F.; Mascarenas, J. L. Pure Appl. Chem. 2011, 83, 495. c) Maulen, P.; Zeldin, R. M.; Gonzalez, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348. d) Alonso, I. ; Faustino, H.; Lopez, F.; Mascarenas, J. L. Angew. Chem. Int. Ed. 2011, 50, 11496; Angew. Chem. 2011, 123, 11698. e) Alonso, I.; Trillo, B.; Lopez, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledos, A.; Mascarenas, J. L. J. Am. Chem. Soc. 2009, 131, 13020. f) Wang, T.; Zhang, J. Chem. Eur. J. 2011, 17, 86. g) Zhang,Y.; Liu, F.; Zhang, L. Chem. Eur. J. 2010, 16, 6146.
    24. X-ray crystallographic data of compounds 3-3c and 3-6a are deposited at Cambridge Crystallographic Data Center: 3-3c (CCDC 1042641) and 3-6a (CCDC 1042642).

    chapter 4
    1. a) Brummond, K. M.; Lu, J. J. Am. Chem. Soc. 1999, 121, 5087. b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. c) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. d) Fruhauf, H. W. Chem. Rev. 1997, 97, 523.
    2. For selected examples, see: a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. b) Kablaouni, N. M.; Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 5818. c) Chatani, N.; Morimoto, T,; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 1996, 120, 5335. d) Shibata, T.; Toshida, N.; Takagi, K. Org. Lett. 2002, 4, 1619.
    3. a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010 110, 704. b) Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219. c) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53. d) Fedoryński, M. Chem. Rev. 2003 103, 1099. e) Doering, W. E.; Hoffmann, A. K. J. Am. Chem. Soc. 1954, 76, 6162. f) Doering, W. von E.; Buttery, R. G.; Laughlin, R. G.; Chaudhure, N. J. Am. Chem. Soc. 1956, 78, 3224. g) Friedman, L.; Shechter, H. J. Am. Chem. Soc., 1960, 82, 1002.
    4. For recent examples see: a) Ando, K. J. Org. Chem. 2010, 75, 8516. b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A. 2010, 114, 12893. d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720. e) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 2009, 1, 482.
    5. Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226.
    6. Zhang, L. Acc. Chem. Res. 2014, 47, 877.
    7. Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
    8. Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
    9. Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
    10. Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
    11. Pawar, S. K.; Wang, C.-D.; Bhuniya, S.; Jadhav, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2013, 52, 7559.
    12. Nosel, P.; Comprido, L. N. D.S.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2013, 135, 15662.
    13. Rao, W.; Koh, M. J.; Li, D.; Hirao, H.; Chan P. W. H. J. Am. Chem. Soc. 2013, 135, 7926.
    14. Lu, B.; Li, C.; Xhang, L. J. Am. Chem. Soc. 2010, 132, 14070.
    15. For representative reviews on gold catalysis, see: a) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237. b) Hashmi, A. S. K. Gold Bull. 2003, 36, 3. c) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. d) Krause, N.; Hoffmann-Röder, A. Org. Biomol. Chem. 2005, 3, 387. e) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. f) Hashmi, A. S. K.; Hutchings, G. Angew. Chem., Int. Ed. 2006, 45, 7896. g) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. h) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. i) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. j) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. k) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. l) Arcadi, A. Chem. Rev. 2008, 108, 3266. m) Shen, H. C. Tetrahedron 2008, 64, 3885. n) Shen, H. C. Tetrahedron 2008, 64, 7847. o) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232.
    16. Maters K.-S.; Wallesch M.; Brase, S. J. Org. Chem. 2011, 76, 9060.
    17. a) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226. b) Blanco, M. C.; Hashmi, A. S. K. Modern Gold Catalyzed Synthesis; Hashmi, A. S. K.; Toste, F. D. Eds.; Wiley-VCH: Weinheim, 2012; Chapter 11, pp 273-295.
    18. X-ray crystallographic data of compound 4-2h was deposited in Cambridge Crystallographic Data Center (CCDC for 4-2h:1409464).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE