研究生: |
王耀振 Wang, Yao-Chen |
---|---|
論文名稱: |
膠體硒化鎘/硫化鋅量子點與奈米共振腔耦合 提升自發輻射之研究 Study to Enhance Spontaneous Emission of Colloidal CdSe/ZnS QDs Coupling to Dielectric and Metallic Nanocavities |
指導教授: |
吳孟奇
Wu, Meng-Chyi 施閔雄 Shih, Min-Hsiung |
口試委員: |
吳孟奇
施閔雄 蘇炎坤 許渭州 劉文超 劉柏村 陳隆建 呂海涵 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 奈米共振腔 、膠體量子點 、自發輻射率 、矽奈米碟盤共振腔 、銀奈米線 |
外文關鍵詞: | nano-resonator, colloidal quantum dot, spontaneous emission, silicon nano-cavity, silver nanowire |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中我們將探討量子點所激發出光子與奈米共振腔間的關係,研究其光子動態行為,為了增強自發輻射強度與耦合效率。在本研究中光源為膠體硒化鎘/硫化鋅量子點,量子點本身具有獨特的發光特性與機制如高發光效率、寬吸引光譜、化學合成可大量生產等優點,但也有受激發光時會因歐傑程序產生閃爍不穩定的缺點,除了從化學與材料上改進外,本研究我們以量子點在空間與頻率上的耦合增強衰逝速率也可降低閃爍的發生。
在膠體量子點與矽奈米碟型共振腔的耦合的研究中,我們以460nm波長的皮米脈衝雷射做光源,在半導體製程的矽奈米碟型共振腔上方的量子點使其耦合至奈米共振腔中,在高濃度量子點的旋鍍下,可以從掃瞄式共軛焦顯微鏡及光激發光譜量得雷射訊號,隨著濃度降低時,高效率矽單光子源也可以達成,皆在半導體製程產生平整的矽奈米碟型共振腔使得有高品質因子進度Purcell效應(6倍)提升,也是光子耦合之速率變快的因素。
另外,我們也研究膠體量子點與金屬間的交互作用。由於繞射極限的因素,光很難被局限於數百奈米以下,而金屬可以超越此限制,可將光場局限於數十奈米的金屬奈米粒子,從Purcell 效應的角度,縮小光場體積也可以提升耦合速度。在這一部分,我們也証明將量子點放置在化學合成之銀奈米線與鍍金之原子力顯微鏡的針尖之中,動態的量測從光譜得到共振腔模態的強度增益,且隨著針尖越來越靠近下,光子耦合速率變快,耦合效率亦明顯的提升至76%。
[1] P. A. M. Dirac, “The Quantum theory of the emission and absorption of radiation,” Proc. Roy. Soc. A, 114, 243–265, 1927
[2] E. Yablonovitch, “Inhibited Spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58, 2059-2062, 1987
[3] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano and S. Noda, "Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals," Science 308, 1296, 2005
[4] S. Noda, M. Fujita and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities", Nature Photonics, 1, 449-458, 2007
[5] Andrew J. Shields, “Semiconductor quantum light sourcse,” Nature Photonics, 1, 215-223, 2007
[6] E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274–1278, 2005
[7] K. Ziemelis, “Display technology: Glowing developments,” Nature 399, 408–411, 1999
[8] M. Grätzel, “Photoelectrochemical cells,” Nature 414, 338–344, 2001
[9] H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science 298, 1372–1377, 2002
[10] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature, 432, 200-203, 2004
[11] B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller and J. Vucˇkovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nature Photonics, 5, 297-300, 2011
[12] D. Englund, D. Fattal, E.Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucˇkovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett., 95, 013904, 2005
[13] W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett., 96, 117401, 2006
[14] K. J. Vahala, “Optical microcavities,” Nature, 424, 839-846, 2003
[15] A. Badolato, K. Hennessy, M. Atatu¨re, J. Dreiser, E. Hu, P. M. Petroff, A. Imamog˘lu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science, 308, 1158-1161, 2005
[16] A. G. P. Abraham, H. Qiao, Ji. Shan, K. A. Abel, T. S. Wang, F. C. J. M. van Veggel and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett., 9, 2849-2854, 2009
[17] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681, 1946
[18] Pierre Berini and Israel De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photonics, 6, 16-24, 2012
[19] R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal and X. Zhang, ”Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nature Materials,10, 110-113, 2011
[20] Lukas Novotny and Niek van Hulst, “Antennas for light,” Nature Photonics, 5, 83-90, 2011
[21] D, Ratchford, F. Shafiei, S. Kim, S. K. Gray and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett., 11, 1049–1054, 2011
[22] S. M. Sze, Semiconductor devices physics and technology 2nd edition, New York: Wiley, 2001, ch. 1.
[23] J. D. Plummer, M. D. Deal and P. B. Griffin 1st edition, Silicon VLSI Technology, Prentice Hall, 2001
[24] A. Hagfeldt, M. Graetzel, “Light-induced Rebox reactions in nanocrystalline systems,” Chemical Reviews, 95, 49-68, 1995
[25] J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson and A. J. Nozik, “Schottky solar cell based on colloidal nanocrystal films,” Nano Lett. 8, 3488-3492, 2008
[26] E. H. Sargent, “Colloidal quantum dot solar cells,” Nature Photonics, 6, 133-135, 2012
[27] E. H. Sargent, “Infrared photovoltaics made by solution processing,” Nature Photonics, 3, 325-331, 2009
[28] Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Optics Express, 19, 2996-3003, 2011
[29] S. Coe, W. K. Woo, M. G. Bawendi and V. Bulovi, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800, 2002
[30] Z. Tan, J. Xu, C. Zhang, T. Zhu, F. Zhang, B. Hedrick, S. Pickering, J. Wu, H. Su, S. Gao, A. Y. Wang, B. Kimball, J. Ruzyllo, N. S. Dellas, and S. E. Mohney, “Colloidal nanocrystal-based light-emitting diodes fabricated on plastic toward flexible quantum dot optoelectronics,” J. Appl. Phys. 105, 034312, 2009
[31] J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature Photonics, 2, 247-250, 2008
[32] M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013, 1998
[33] W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016, 1998
[34] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose,. J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagonostics,” Science 307, 538, 2005
[35] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, “Quantum dot bioconjugates for imaging, labeling and sensing,” Nature Materials 4, 435, 2005
[36] P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kr¨oll, G. Leuchs, M. Lewenstein, D. Loss, N. L¨utkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup and A. Zeilinger, “Quantum information processing and communication – strategic report on current status”, visions and goals for research in Europe. Eur. Phys. J. D 36, 203, 2005
[37] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145, 2002
[38] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009)
[39] J. Y. Zhang, X. Y. Wang, and M. Xiao, “Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface,” Opt. Lett. 27, 1253, 2002.
[40] R. J. Moerland et al., “Reversible Polarization Control of Single Photon Emission,” Nano Lett. 8, 606, 2008
[41] N. L. Thomas, U. Woggon, O. Scho¨ps, MV. Artemyev, M. Kazes, U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6, 557, 2006
[42] I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quamtum dots ot photonic crystal cavities at room temperature,” Appl Phys Lett., 87, 241102-1, 2005
[43] B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, A. Atwater, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl Phys Lett. 89, 191124-1, 2006
[44] Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl Phys Lett, 90, 171105-1, 2007
[45] A. Taflove, SC. Hagness Computational electrodynamics: the finite-difference time-domain method, third ed. London: Artech House; 2005.
[46] SL. McCall, AFJ. Levi, RE. Slusher, SJ. Pearton, RA. Logan, “Whispering-gallery mode microdisk lasers,” Appl Phys Lett, 60, 289-91, 1992
[47] C. Santori, D. Fattal, J. Vu kovi , G. S. Solomon and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594, 2002
[48] V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901, 2010
[49] M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuation of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904, 2010
[50] P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, “Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium,” Opt. Express 18, 6360, 2010
[51] S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flow in artificial materials,” Phys. Rev. Lett. 89, 186802, 2002
[52] G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett. 88, 137401, 2002
[53] B. R. Fisher, H. J. Eisler, N. E. Stott, and M. G. Bawendi, “Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes,” J. Phys. Chem. B 108, 143, 2004
[54] X. Wu, Y. Sun and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11, 5867-5870, 2009
[55] K. Zhang, H. Chang, A. Fu, A. P. Alivisatos, and H. Yang, “Continuous distribution of emission states from single CdSe/ZnS quantum dots,” Nano Lett. 6, 843, 2006
[56] X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403, 2004
[57] M. De Vittorio, F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, A. Bramati and R. Cingolani, “Recent advances on single photon sources based on single colloidal nanocrystals,” Opto-Electron. Rev. 18, 1, 2010
[58] P. Michler, A. Imamo lu, M. D. Mason, P. J. Carson, G. F. Strouse & S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968, 2000
[59] X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, “High efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals,” Appl. Phys. Lett. 85, 712, 2004
[60] X Brokmann, G Messin, P Desbiolles, E Giacobino, M Dahan and J P Hermier, “Colloidal CdSe/ZnS quantum dots as single photon sources,” New J. Phys. 6, 99, 2004
[61] C. T. Yuan, P. Yu, H. C. Ko, J. Huang and Jau Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3, 3051, 2009
[62] V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287, 1011, 2000
[63] Y. Xia, N. J. Halas, “Shape controlled synthesis and surface plasmonic properties of metallic nanostructure,” MRS Bull. 30, 338–44, 2005
[64] D.J. Campbell, Y. Xia, “Plasmons: why should we care?” J. Chem. Educ. 84, 91–96, 2007
[65] N.W. Ashcroft, N.D. Mermin, Solid State Physics. New York: Rinehart. pp.848 1976
[66] J.M. Brockman, B.P. Nelson, R.M. Corn, “Surface plasmon resonance imaging measurement of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63, 2000
[67] N. Nath, A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–9, 2002
[68] Y. Sun, Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–305, 2002
[69] N. T. K. Thanh, Z. Rosenzweig, “Development of an aggregation-based immunoassay for anti-protein a sung gold nanoparticles,” Anal. Chem. 74, 1624–28, 2002
[70] P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc, 124, 14310. 2002
[71] C. G. Hubner, G. Zumofen, A. Renn, A. Herrmann, K. Müllen, and T. Basché, “Photon antibunching and collective effects in the fluorescence of single biochromophoric molecules,” Phys. Rev. Lett. 91, 093903, 2003
[72] M. Hofkens, et al, “Revealing competitive Förster-type resonance energy-transfer pathways in single bichromophoric molecules,” Proc. Natl. Acad. Sci, 100, 13146. 2003
[73] K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett, 89, 117401, 2002
[74] D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, X. Q. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett, 11, 1049, 2011
[75] Y. Matsumoto, R. Kanemoto, T. Itoh, S. Nakanishi, M. Ishikawa, V. J. Biju, “Photoluminescence quenching and intensity fluctuation of CdSe-ZnS quantum dots on an Ag nanoparticle film,” Phys. Chem. C, 112, 1345, 2008
[76] C. T. Yuan, P. Yu, J. Tang, “Blinking suppression of colloidal CdSe/ZnS quantum dots by coupling to silver nanoprisms,” Appl. Phys. Lett, 94, 243108, 2009
[77] E. Fort, S. Gresillon, “Surface enhanced fluorescence,“ J. Phys. D: Appl. Phys, 41, 013001. 2008
[78] D. J. Bergman, M. I. Stockman, “Evidence of nonperturbative comtinuum correlations in two-demensional exciton systems in semiconductor microcavities, “ Phys. Rev. Lett. 90, 027402, 2003
[79] M. I. Stockman, “Spacers explained,“ Nature Photonics 2, 327-329, 2008
[80] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalae, E. Narimanov, S. Stout, E. Herz, T. Suteewong and U. Wiesner, “Demonstration of a spaser-based nanolaser,“ Nature 460, 1110-1112, 2009
[81] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal and X. Zhang, “Plasmon lasers at deep subwavelength scale,“ Nature 461, 629-632, 2009
[82] R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,“ Nature Material 10, 110-113, 2010
[83] R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F -S Choa, J. P. Long , “A room-temperature semiconductor spaser operating near 1.5μm,“ Opt. Express 19, 8954-8961, 2011
[84] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,“ Phys. Rev. Lett. 95, 257403, 2005
[85] C. L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on silica substrate,“ Appl. Phys. Lett. 97, 183102, 2010
[86] W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wan, “Light propagation in curved silver nanowire plasmonic waveguide,“ Nano Lett. 11, 1603-1608, 2011
[87] Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander and H. Xu, “Directional light emission from propagting surface plasmons of silver nanowires,“ Nano Lett. 9, 4383-4386, 2009
[88] A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,“ Phys. Rev. Lett. 106, 096801, 2011
[89] K. J. Russell. J. Prakash, M. T. Khan, S. K. Dhawan, and A. M. Biradar, “Memory effect in cadmium telluride quantum dots doped ferroelectric liquid crystals,“ Appl. Phys. Lett. 97, 163113, 2010
[90] M. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface by quantum dots,“ Nano Lett. 6, 2833-2837, 2006