簡易檢索 / 詳目顯示

研究生: 唐若華
Tang, Jo-Hua
論文名稱: 基於詞性之斷詞方法以改善華語語音合成系統
POS-based Word Segmentation for Improving Mandarin Chinese TTS
指導教授: 張智星
Jang, Jyh-Shing Roger
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 40
中文關鍵詞: 華語斷詞華語語音合成系統詞性隱藏式馬可夫模型
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出基於詞性之華語斷詞方法來改善華語語音合成系統,選用詞性的原因有三點,分別為「前後詞性搭配通常具有一定的規則」和「每個字只會有幾種常見的詞性」,這兩點可解決斷詞中未知詞的問題,第三點為「詞性會影響破音字的念法」,這點可解決在華語語音合成中常見的破音字問題。
    本論文主要是利用特製化隱藏式馬可夫模型(specialized hidden Markov model, Specialized HMM)來處理華語斷詞,特製化的過程為利用「詞性」擴充狀態符號,觀測符號則維持為原來的華語字元。由於本論文的華語斷詞是針對使用在華語語音合成,因此在斷詞的標準上和一般資訊處理上的斷詞不盡相同,會根據詞性規則在訓練之前將詞先做合併。實驗結果中證實各種斷詞法加上詞性會提升斷詞準確率。
    華語斷詞另一個常見的問題,為歧義性的問題,為了要解決歧義性的問題,本論文將以詞性為基礎的特製化隱藏式馬可夫模型和長詞優先法隱藏式馬可夫模型(M-HMM)透過一些準則做結合,稱為選擇性特製化隱藏式馬可夫模型。選擇性特製化隱藏式馬可夫模型結合了以上兩種方法的優點,來解決未知詞和歧義性的問題,於實驗結果中證實可再度提升斷詞的準確率。


    This thesis proposes a POS-based (part of speech) word segmentation method for improving the speech quality produced by a Mandarin Chinese Text-To-Speech (TTS) system. POS information is adopted in word segmentation due to the following three reasons. First, collocation of POS's usually follows a certain syntactic rules. Second, every Mandarin character is only categorized as a certain set of POS's. The above two phenomena can solve the unseen word problem for word segmentation. The third reason is that the pronunciation of polyphonic characters usually depends on characters' POS's.
    In this thesis, POS information is incorporated with specialized hidden Markov models (Specialized HMM). In this approach, POS is used to extend the state symbols while the observation symbols represent Mandarin characters as before. Since the word segmentation described in this thesis is designed for a Mandarin Chinese TTS system, words are segmented differently from those standards used in information processing. Hence, according to some observed POS rules, certain words are combined as one single word before training. Experimental results show that adding POS information can effectively improve the segmentation accuracy.
    Another frequently seen problem is the segmentation ambiguity problem. In order to solve this problem, we combine POS-based specialized HMMs and maximum matching HMMs (M-HMM), called selective specialized HMMs, in order to acquire the benefits and compensate the weakness of these two methods towards the unseen word problem and segmentation ambiguity problem. Experimental results show that the selective specialized HMMs can further improve the segmentation accuracy against the POS-based specialized HMMs.

    摘要 ............................................... i Abstract ........................................... ii 致謝 ............................................... iii 目錄 ............................................... iv 圖目錄.............................................. vi 表目錄.............................................. vii 第1章 緒論 ......................................... 1 1.1 簡介 ........................................... 1 1.2 相關研究 ....................................... 2 1.2.1 語音合成相關研究 ............................. 2 1.2.2 斷詞相關研究 ................................. 4 1.3 本論文研究方向 ................................. 6 1.4 章節概要 ....................................... 7 第2章 華語斷詞 ..................................... 8 2.1 BIES標籤 ....................................... 9 2.2 隱藏式馬可夫模型VS 特製化隱藏式馬可夫模型 ...... 10 2.3 維特比演算法 ................................... 12 2.4 M-HMM .......................................... 13 2.4.1 長詞優先斷詞法 ............................... 13 2.4.2 M-HMM之特製化過程 ............................ 14 2.5 以「詞性」為基礎的特製化隱藏式馬可夫模型 ....... 15 2.6 選擇性特製化隱藏式馬可夫模型 ................... 16 第3章 注音標註 ..................................... 18 3.1 斷詞對破音字注音標註的影響 ..................... 18 3.2 詞性對破音字注音標註的影響 ..................... 18 3.2.1 詞性對姓氏的影響 ............................. 19 3.2.2 詞性對一般字的影響 ........................... 19 第4章 實驗結果與分析 ............................... 20 4.1 實驗語料 ....................................... 20 4.1.1 中研院平衡語料庫 ............................. 20 4.1.2 中時電子報 ................................... 20 4.1.3 姓名語料 ..................................... 21 4.1.4 語料前處理 ................................... 21 4.2 實驗設定與結果 ................................. 23 4.2.1 詞性對斷詞準確率之驗證 ....................... 24 4.2.2 選擇性特製化隱藏式馬可夫模型 ................. 26 4.2.3 參數量多寡分析 ............................... 30 4.2.4 實驗錯誤分析 ................................. 31 第5章 結論與未來展望 ............................... 32 參考文獻 ........................................... 34 附錄1:中研院平衡語料庫詞類標記集 ................... 37 附錄2:姓氏破音字表 ................................. 38 附錄3:詞性破音字表 ................................. 39

    【1】 Alan W. Black and Nick Campbell, “Optimising Selection of Units from Speech Databases for Concatenative Synthesis,” in Proc. of EUROSPEECH, pp.581–584, Sep. 1995.
    【2】 E. Moulines, F. Charpentier, “Pitch Synchronous Waveform Processing Techniques for Text-to-Speech Synthesis using Diphones”, Speech Communication 9 (5,6), pp. 453-467, 1990.
    【3】 W. Verhelst, and M. Roelands, “An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech” Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on, p.554-557, 1993.
    【4】 Takayoshi Yoshimura, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, and Tadashi Kitamura, “Simultaneous Modeling of Spectrum, Pitch and Duration in HMM-based Speech Synthesis,” in Proc. of EUROSPEECH,pp.2347–2350, 1999.
    【5】 羅珝瑩,張智星,「根基於HMM之華語語音合成初步研究」,國立清華大學資訊工程學系碩士論文,民98年。
    【6】 Satoshi Imai, “Cepstral Analysis Synthesis on the Mel Frequency Scale,” in Proc. of ICASSP, pp.93–96, 1983.
    【7】 鐘綸,張智星,「用於語音合成的中文斷詞分析」,國立清華大學資訊系統與應用所碩士論文,民93年。
    【8】 Chen K. J. And S. H. Liu, “Word Identification for Mandarin Chinese Sentences,” Proceeding of COLING-92, 14th Int. Conf. On Computational Linguistics, pp. 101-107,1992.
    【9】 范長康、蔡文祥,「以鬆弛法作中文斷詞」,全國計算機會議論文集,頁423-431,
    ~ 35 ~
    民76 年。
    【10】Sporat R. and C. Shih, “A Statistical Method for Finding Word Boundaries in Chinese Text,” Computer Processing of Chinese and Oriental Languages, Vol. 4, No. 4, pp.336-351, 1990.
    【11】張俊盛、陳志達、陳舜德,「限制式滿足及機率最佳化的中文斷詞方法」,中華民國八十年第四屆計算機語言學研討會論文集,1991。
    【12】N. Xue. “Chinese Word Segmentation as Character Tagging,” International Journal of Computational Linguistics and Chinese, pp. 29–48, 2003.
    【13】C. L. Goh, M. Asahara and Y. Matsumoto. “Chinese Word Segmentation by Classification of Characters,” International Journal of Computational Linguistics and Chinese Language Processing Vol. 10, No. 3, pp. 381-396, 2005
    【14】M. Asahara, C. L. Goh, X. Wang and Y. Matsumoto. “Combining Segmenter and Chunker for Chinese Word Segmentation,” In Proceedings of Second SIGHAN Workshop on Chinese Language Processing, pp. 144–147, 2003
    【15】X. Lu. “Towards a Hybrid Model for Chinese Word Segmentation,” In Proceedings of Fourth SIGHAN Workshop on Chinese Language Processing, pp.189–192, 2005
    【16】H. P. Zhang, H. K. Yu, D. Y. Xiong and Q. Liu. “HHMM-based Chinese Lexical Analyzer ICTCLAS,” In Proceedings of Second SIGHAN Workshop on Chinese Language Processing, pp. 187–187, 2003
    【17】Yeh C. L. and Lee H. J. , “Rule-Based Word Identification for Mandarin Chinese Sentences-A Unification Approach”,Computer Processing of Chinese and Oriental Languages, 5(2) p:97-118, 1991.
    【18】李振昌、李御璽、陳信希,「中文文本人名辨識問題之研究」, <第七屆計算器語言會會議論文集>,頁203-222,民83年。
    【19】彭載衍、張俊盛,「中文辭彙歧義之研究-斷詞與詞性標示」,<第六屆中華民國計算語言學研討會論文集>,溪頭,173-194頁,民82年。
    ~ 36 ~
    【20】Rabiner. L. R “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition ,”Proceedings of the IEEE, Vol.77, No.2, pp.257-286,1989
    【21】Kim, J. D., S. Z. Lee and H. C. Rim. (1999). “HMM Specialization with
    Selective Lexicalization.” In Proceedings of the join SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP-VLC-99), pp. 121-127, 1999
    【22】Lee, S. Z., J. I. Tsujii and H. C. Rim.(2000). “ Lexicalized Hidden Markov
    Models for Part-of-Speech Tagging”. In Proceedings of 18th International Conference on Computational Linguistics, Saarbrucken, Germany, pp.481-787, 2000
    【23】林千翔,張嘉惠,「基於特製隱藏式馬可夫模型之中文斷詞研究」,國立
    中央大學資訊工程學系碩士論文,民95年。
    【24】Zhang Hua-Ping, Qun Liu, Hao Zhang, Xue-Qi Cheng, “Automatic Recognition of Chinese Unknown Words Based on Role Tagging,” Proceeding of the First SIGHAN Workshop on Chinese Processing, pp71-77.
    【25】江振宇,陳信宏,「中文斷詞器之改進」,國立交通大學電信工程學系碩士論文,民93年。
    【26】傅明榮,王逸如,「中文字轉音系統之文句分析的進一步研究」,國立交通大學電信工程學系碩士論文,民96年。
    【27】http://www.grsampson.net/Resources.html。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE