研究生: |
王奕筑 Wang, Yi-Chu |
---|---|
論文名稱: |
雷射調製keV電子驅動之兆赫波Smith-Purcell超輻射 THz Superradiant Smith-Purcell FEL driven by laser-modulated keV electrons |
指導教授: |
黃衍介
Huang, Yen-Chieh |
口試委員: |
張存續
Chang, Tsun-Hsu 劉偉強 Lau, Wai Keung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | Smith-Purcell 、兆赫茲 |
外文關鍵詞: | Smith-Purcell, THz |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
密度調製的電子束可用於產生在其調製頻率上的同調性自發輻射。本次實驗使用了多色雷射產生近兆赫茲的拍頻。利用此光源產生在keV的電子腔內產生光電流。利用調製過的電子束來驅動Smith-Purcell 自由電子雷射來產生兆赫茲同調性輻射。首先,將於Nd:YVO4雷射腔內放置一塊薄的etalon用來產生雙色的紅外光雷射。雙色雷射的頻率差為124.6 GHz。利用非線性晶體產生雙色雷射的四倍頻UV光,估計此UV光的頻率差也為12.4 GHz。利用此UV光照射於光陰極電子腔內,可產生頻率調製的光電流。取其中一個設計為例:將光源照射在一個可以產生10~25 keV的光陰極電子槍內,產生出近毫安培的電子從上方傳遞過一個長30 mm、週期240 um的光柵,用此產生Smith-Purcell輻射。我們使用電腦模擬軟體Magic在模擬中證實在與光柵夾角56度的方向產生了124.6 GHz的第三階輻射。其結果可清晰的在模擬結果中觀察到同調性的Smith-Purcell輻射。
A density-modulated electron beam can generate coherent spontaneous radiation at the harmonics of the modulating frequency. This study employs a multicolor laser beating at sub-THz frequencies to modulate the photocurrent from a keV electron gun. The modulated electron beam drives a Smith–Purcell FEL to generate THz coherent radiation. We first built an infrared two-color laser containing a thin etalon in an Nd:YVO4 laser cavity to generate two laser spectral components separated by 124.6 GHz. Quadrupling the laser frequency in nonlinear optical materials generates a UV frequency with adjacent components separated by 124.6 GHz. This UV laser is useful to modulate the photocurrent from a photoinjector at the comb frequencies. As a design example, the photocathode of a 10–25 keV DC electron gun is illuminated with this multicolor laser and the keV electron beam is propagated above a 30 mm-long Smith–Purcell grating with a groove period of 240 um. With 18.2 keV beam energy, our simulation using the MAGIC code confirms coherent radiation at the third harmonic of the 124.6 GHz at a 56-degree radiation angle from the Smith–Purcell grating. Coherent radiation can be observed in simulation with a sub-mA beam current.
[1] B. Ferguson and X. –C. Zhang, “Materials for terahertz science and
technology”, Nature Materials 1, 26-33, (2002).
[2] S.P. Mickan and X.-C. Zhang, Int. J. High Speed Electron. Syst. 13, 601, (2003).
[3] P.H. Siegel, IEEE Trans Microwave Theory Tech. 50, 910, (2002).
[4] T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and
backward Terahertz-wave difference-frequency generations from periodically
poled lithium niobate”, Optics Express 16, 6471-6478, (2008).
[5] P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting
dipole antennas,” IEEE J. Quantum Electron. 24, 255-256, (1988).
[6] X.-C., B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond
electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56,
1011-1013, (1990).
[7] J. Faist et al. , “Quantum Cascade Laser,” Science 264 553-556, (1994).
[8] S. J. Smith and E. M. Purcell, “Visible Light from Localized Surface Charges Moving across a Grating,” Phys Rev 92, 1069 (1953), 10.1103/PhysRev.92.1069
[9] K. Floettmann, ASTRA User Manual, http://www.desy.de/~mpyflo/Astra_dokumentation/.
[10] L. Ludeking, ‘‘The MAGIC User’s Manual.’’
[11] D. Li, Z. Yang, K. Imasaki, and Gun-Sik Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 9, 040701 (2006)
[12] J. Gardelle, L. Courtois, P. Modin, and J. T. Donohue, “Observation of coherent Smith-Purcell radiation using an initially continuous flat beam,” Phys. Rev. ST Accel . Beams 12, 110701(2009)
[13]Yen-Chieh Huang, “Desktop megawatt superradiant free-electron laser at terahertz frequencies,” Appl. Phys. Lett. 96, 231503 (2010)
[14] J. M. Byrd, W. P. Leemans, A. Loftsdottir, B. Marcelis, Michael C. Martin, W. R. McKinney, F. Sannibale, T. Scarvie, and C. Steier, “Observation of Broadband Self-Amplified Spontaneous Coherent Terahertz Synchrotron Radiation in a Storage Ring,” Phys. Rev. Lett. 89, 224801(2002)
[15] M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, W. B. Peatman, U. Schade, G. Wüstefeld, and H.-W. Hübers, “Brilliant, Coherent Far-Infrared (THz) Synchrotron Radiation,” Phys. Rev. Lett. 90, 094801(2003)
[16] Mauro Mineo and Claudio Paoloni, Member, IEEE, “Corrugated Rectangular Waveguide Tunable Backward Wave Oscillator for Terahertz Applications,” IEEE Transactions on electron devices, Vol. 57, No. 6 (2010)
[17] G. P. Williams, “FAR-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser,” Rev. Sci. Instrum. 73, 1461 (2002)
[18] A. Gover, Phys. Rev. ST Accel. Beams 8, 030701 (2005).