研究生: |
黃蜂運 Huang, Feng-Yun Jimmy |
---|---|
論文名稱: |
錸-188標誌奈米微脂體於大鼠腦神經膠質腫瘤之診療評估 Theranostic Evaluation of 188Re-Labeled PEGylated Nanoliposome in Glioma Bearing Rat Model |
指導教授: |
羅建苗
Lo, Jem-Mau 張建文 Chang, Chien-Wen |
口試委員: |
謝栢滄
Hsieh, Bor-Tsung 高志浩 Kao, Chih-Hao K. 李德偉 Lee, Te-Wei 蔡長書 Tsai, Chang-Shu |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 174 |
中文關鍵詞: | 錸-188 、微脂體 、多型性膠質母細胞瘤 |
外文關鍵詞: | 188Re, liposome, glioblastoma multiforme |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多型性膠質母細胞瘤(glioblastoma multiforme; GBM)及分化不良星狀細胞瘤(anaplastic astrocytoma; AA),為原發性中樞神經系統中最為常見之惡性神經膠質腫瘤(malignant gliomas)。惡性神經膠質腫瘤其高好發性及高致死性導致它被列為第4位嚴重具致死性的癌症。本研究中,首先製備聚乙二醇(polyethylene glycol; PEG)修飾之長循環錸-188標誌奈米微脂體(PEGylated 188Re-liposomes)藥物,並以原位形成大鼠腦神經膠質腫瘤(Fischer344/F98 or F98luc)進行診療(theranostics)評估。藥物透過單次尾靜脈注射進原位荷瘤大鼠後,其診斷性評估實驗包括有生物分佈、藥物動力學、自體放射顯像、組織病理學及單光子發射電腦斷層照影(SPECT/CT);療效性評估實驗則包括有最大耐受劑量評估、體內輻射劑量學評估、生物冷光照影及療效評估等。
結果顯示,錸-188標誌奈米微脂體能藉由對腫瘤之通透性增強及停滯效應(enhanced permeability and retention effect; EPR effect)有效地累積於腦腫瘤位置,其藥物累積量自注射後1小時的0.28±0.09 %ID/g至24小時的1.95±0.35 %ID/g。進一步分析,腫瘤對正常腦組織的藥物攝取比(tumor-to-normal brain ratio; T/N ratio)自藥物注射後1小時的3.5倍至24小時的32.5倍。自動放射顯像及組織病理切片實驗皆證實藥物的累積具高T/N比。此外,藥物注射後的4小時至48小時,單光子發射電腦斷層照影可清楚呈現腦腫瘤之影像。於療效性相關實驗中,完成建立具生物冷光報導基因之大鼠腦神經膠質腫瘤細胞(F98luc),體外生物冷光表現顯示其細胞數量與生物冷光強度呈高線性正比關係(R2 = 0.99)。進一步於體內實驗顯示,生物冷光系統可有效作為非侵入式活體影像監控大鼠腦腫瘤之生長。最大耐受輻射劑量實驗顯示,大鼠對錸-188標誌奈米微脂體藥物最大容許活度值為333 MBq。療效評估顯示,相較於控制組(注射生理食鹽水),錸-188標誌奈米微脂體藥物治療之荷瘤大鼠其不僅能有效抑制腫瘤生長,並且能延長其荷瘤大鼠之存活率(10.67%)(P<0.05)。另外,體內輻射劑量學評估結果示,錸-188標誌奈米微脂體藥物除了在脾臟(6.96 mSv/MBq)及腎臟(1.20 mSv/MBq)有相對高的劑量累積外,其它危急器官如正常腦組織(2.75×10-2 mSv/MBq)、紅骨髓(5.13×10-2 mSv/MBq)、及甲狀腺(7.04×10-2 mSv/MBq)等皆顯示存在較低之輻射累積劑量。
總結,錸-188標誌奈米微脂體藥物應用於原位形成大鼠腦神經膠質腫瘤之診斷及治療評估已詳盡於本研究中完成。透過劑量學、存活率等療效性評估可清楚顯示,系統性施行錸-188標誌奈米微脂體藥物,其被動標靶至腫瘤特性能有意義延長荷瘤大鼠之存活期並維持系統之輻射劑量安全性。綜合以上研究結果,錸-188標誌奈米微脂體藥物可為一有潛力之診療性放射藥物,並且值得進一步發展作為臨床上治療惡性神經膠質腫瘤之藥劑。
Malignant glioma, including glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), is the most frequently relapsed cancer in the primary brain and central nervous system. High morbidity and mortality make it as the fourth most serious death-leading cancer worldwide. In this study, the 188Re-labeled PEGylated nanoliposomes (188Re-liposomes) were fabricated and evaluated as novel theranostic agents in an orthotopic glioma-bearing rat model (Fischer344/F98 or F98luc). The orthotopic glioma-bearing rats were carefully prepared and subsequently administered with 188Re-liposomes via single intravenous injection. Non-invasive bioluminescence imaging (BLI) was used to monitor tumor growth progress on Fischer344/F98luc model. For diagnostic evaluation, a series of experiments including biodistribution, pharmacokinetics, autoradiography, histopathology, and SPECT/CT imaging were conducted. A therapeutic evaluation, supported with pathological examination, was followed by monitoring the survivals of the 188Re-liposomes-treated rats together with non-treated group along with the reared time. Meanwhile, the dosimetry for the radiotherapeutic study was assessed.
It is indicated from the diagnostic study that 188Re-liposomes could be efficiently and increasingly accumulated in the brain tumor from 0.28±0.09 %ID/g at 1 h to a maximum of 1.95±0.35 %ID/g at 24 h postinjection, with the tumor-to-normal brain uptake ratio (T/N ratio) from 3.5 at 1 h to 32.5 at 24 h. Both autoradiography and histopathological examination gave correlative informations for the diagnostic study. In addition, the tumors implanted in the rats could be obviously observed via SPECT/CT imagings in the growth period from 4 h till 48 h.
For therapeutic study, the reporter cell line F98luc could afford a good relationship between the cell number and the bioluminescent intensity (R2 = 0.99) in vitro and the BLI could be used as a non-invasive imaging system to clearly monitor the brain tumor growth in vivo. It is demonstrated from the therapeutic study that the 188Re-liposomes-treated rats not only had the tumor growth inhibited but also had the survival with 10.67% prolonged as compared with the control group (treated with normal saline), with significance P<0.05. In dosimetry, the relative high radiation doses were found in the spleen (6.96 mSv/MBq) and kidney (1.20 mSv/MBq) whereas very less doses were found in the normal brain (2.75×10-2 mSv/MBq), red marrow (5.13×10-2 mSv/MBq), and thyroid (7.04×10-2 mSv/MBq); the maximum tolerated dose of 188Re-liposomes in Fischer344 rats was estimated to be 333 MBq.
In summary, this work has revealed the potentiality of the role of 188Re-liposomes acted as a theranostic pharmaceutical and it is worthy to further evaluate the agent clinically for brain tumor therapy.
1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. Ca-a Cancer Journal for Clinicians 63: 11-30.
2. Jemal A, Siegel R, Ward E, Hao YP, Xu JQ, et al. (2008) Cancer statistics, 2008. Ca-a Cancer Journal for Clinicians 58: 71-96.
3. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and Radiation Therapy: Current Advances and Future Directions. International Journal of Medical Sciences 9: 193-199.
4. Seidlin SM, Marinelli LD, Oshry E (1946) Radioactive Iodine Therapy - Effect on Functioning Metastases of Adenocarcinoma of the Thyroid. Jama-Journal of the American Medical Association 132: 838-847.
5. Larson SM, Carrasquillo JA, Krohn KA, Brown JP, Mcguffin RW, et al. (1983) Localization of I-131-Labeled P97-Specific Fab Fragments in Human-Melanoma as a Basis for Radiotherapy. Journal of Clinical Investigation 72: 2101-2114.
6. Jurcic JG, McDevitt MR, Sgouros G, Ballangrud A, Finn RD, et al. (1997) Targeted alpha-particle therapy for myeloid leukemias: A phase I trial of bismuth-213-HuM195 (anti-CD33). Blood 90: 2245-2245.
7. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. Faseb Journal 19: 311-330.
8. Kim BYS, Rutka JT, Chan WCW (2010) Current Concepts: Nanomedicine. New England Journal of Medicine 363: 2434-2443.
9. Matsumura Y, Maeda H (1986) A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research 46: 6387-6392.
10. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 65: 271-284.
11. Dash A, Knapp FF, Pillai MRA (2013) Industrial radionuclide generators: a potential step towards accelerating radiotracer investigations in industry. Rsc Advances 3: 14890-14909.
12. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nature Reviews Cancer 2: 683-693.
13. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Development 17: 545-580.
14. Bae Y, Diezi TA, Zhao A, Kwon GS (2007) Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. Journal of Controlled Release 122: 324-330.
15. Ting G, Chang CH, Wang HE (2009) Cancer Nanotargeted Radiopharmaceuticals for Tumor Imaging and Therapy. Anticancer Research 29: 4107-4118.
16. Ting G, Chang CH, Wang HE, Lee TW (2010) Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol 2010.
17. Ferro-Flores G, Ocampo-Garcia BE, Santos-Cuevas CL, Morales-Avila E, Azorin-Vega E (2014) Multifunctional Radiolabeled Nanoparticles for Targeted Therapy. Current Medicinal Chemistry 21: 124-138.
18. Chopra D (2011) Radioisotopes - Applications in Bio-Medical Science. In: Singh N, editor: InTech. pp. 225-249.
19. Sheets NC, Wang AZ (2011) Radioisotopes - Applications in Bio-Medical Science. InTech. pp. 47-67.
20. Zhang L, Chen H, Wang L, Liu T, Yeh J, et al. (2010) Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnology, Science and Applications 3: 159-170.
21. Phillips WT, Bao AD, Brenner AJ, Goins BA (2014) Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Advanced Drug Delivery Reviews 76: 39-59.
22. Niclou SP, Fack F, Rajcevic U (2010) Glioma proteomics: Status and perspectives. Journal of Proteomics 73: 1823-1838.
23. Quick A, Patel D, Hadziahmetovic M, Chakravarti A, Mehta M (2010) Current therapeutic paradigms in glioblastoma. Rev Recent Clin Trials 5: 14-27.
24. Bao A, Goins B, Klipper R, Negrete G, Phillips WT (2003) Re-186-liposome labeling using Re-186-SNS/S complexes: In vitro stability, imaging, and biodistribution in rats. Journal of Nuclear Medicine 44: 1992-1999.
25. Chen LC, Chang CH, Yu CY, Chang YJ, Hsu WC, et al. (2007) Biodistribution, pharmacokinetics and imaging of Re-188-BMEDA-labeled pegylated liposomes after intraperitoneal injection in a C26 colon carcinoma ascites mouse model. Nuclear Medicine and Biology 34: 415-423.
26. Chen LC, Chang CH, Yu CY, Chang YJ, Wu YH, et al. (2008) Pharmacokinetics, micro-SPECT/CT imaging and therapeutic efficacy of (188)Re-DXR-liposome in C26 colon carcinoma ascites mice model. Nuclear Medicine and Biology 35: 883-893.
27. Chang YJ, Chang CH, Yu CY, Chang TJ, Chen LC, et al. (2010) Therapeutic efficacy and microSPECT/CT imaging of Re-188-DXR-liposome in a C26 murine colon carcinoma solid tumor model. Nuclear Medicine and Biology 37: 95-104.
28. Tsai CC, Chang CH, Chen LC, Chang YJ, Lan KL, et al. (2011) Biodistribution and pharmacokinetics of Re-188-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice. International Journal of Nanomedicine 6: 2607-2619.
29. Chang CH, Liu SY, Lee TW (2014) Pharmacokinetics of BMEDA after Intravenous Administration in Beagle Dogs. Molecules 19: 538-549.
30. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen YW, et al. (2013) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro-Oncology 15: 1-56.
31. Fritz A, Percy C, Jack A, Shanmugaratnam K, Sobin L, et al. (2000) International Classification of Diseases for Oncology, Third edition.: World Health Organization.
32. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al. (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica 114: 97-109.
33. Kleihues P, Burger PC, Scheithauer BW (1993) The New Who Classification of Brain-Tumors. Brain Pathology 3: 255-268.
34. Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. Journal of Neuro-Oncology 108: 11-27.
35. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, et al. (2007) Long-term survival with glioblastoma multiforme. Brain 130: 2596-2606.
36. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, et al. (2010) Exciting New Advances in Neuro-Oncology The Avenue to a Cure for Malignant Glioma. Ca-a Cancer Journal for Clinicians 60: 166-193.
37. Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) 'Pseudopalisading' necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. Journal of Neuropathology and Experimental Neurology 65: 529-539.
38. Joshi SK, Zuniga R (2014) Tumors of the Central Nervous System - Primary and Secondary. In: Morgan LR, editor. High Grade Glioma — Standard Approach, Obstacles and Future Directions: InTech.
39. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, et al. (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120: 707-718.
40. Chang SM, Parney IF, Huang W, Anderson FA, Asher AL, et al. (2005) Patterns of care for adults with newly diagnosed malignant glioma. Jama-Journal of the American Medical Association 293: 557-564.
41. Charnley N, West CM, Barnett CM, Brock C, Bydder GM, et al. (2006) Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. International Journal of Radiation Oncology Biology Physics 66: 331-338.
42. Vredenburgh JJ, Desjardins A, Reardon DA, Peters KB, Herndon JE, et al. (2011) The Addition of Bevacizumab to Standard Radiation Therapy and Temozolomide Followed by Bevacizumab, Temozolomide, and Irinotecan for Newly Diagnosed Glioblastoma. Clinical Cancer Research 17: 4119-4124.
43. Perlstein B, Finniss SA, Miller C, Okhrimenko H, Kazimirsky G, et al. (2013) TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo. Neuro-Oncology 15: 29-40.
44. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine 352: 987-996.
45. Wen PY, Kesari S (2008) Malignant gliomas in adults. New England Journal of Medicine 359: 492-507.
46. Chandana SR, Movva S, Arora M, Singh T (2008) Primary brain tumors in adults. American Family Physician 77: 1423-1430.
47. Reardon DA, Wen PY (2006) Therapeutic advances in the treatment of glioblastoma: Rationale and potential role of targeted agents. Oncologist 11: 152-164.
48. Vanpouille-Box C, Lacoeuille F, Belloche C, Lepareur N, Lemaire L, et al. (2011) Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with Re-188-lipid nanocapsules. Biomaterials 32: 6781-6790.
49. Phillips WT, Goins B, Bao A, Vargas D, Guttierez JE, et al. (2012) Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma. Neuro-Oncology 14: 416-425.
50. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, et al. (1994) Convection-Enhanced Delivery of Macromolecules in the Brain. Proceedings of the National Academy of Sciences of the United States of America 91: 2076-2080.
51. Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. Journal of Neurosurgery 90: 315-320.
52. Raghavan R, Brady ML, Rodriguez-Ponce MI, Hartlep A, Pedain C, et al. (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20: E12.
53. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiology of Disease 37: 13-25.
54. Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Current Opinion in Pharmacology 6: 494-500.
55. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nature Reviews Drug Discovery 1: 131-139.
56. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2: 3-14.
57. Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE, et al. (2008) Intracerebral infusion of an EGFR-targeted toxin in replased malignant brain tumors. Neuro-Oncology 10: 320-329.
58. Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3: 90-105, 151.
59. Dhuria SV, Hanson LR, Frey WH (2010) Intranasal Delivery to the Central Nervous System: Mechanisms and Experimental Considerations. Journal of Pharmaceutical Sciences 99: 1654-1673.
60. da Fonseca CO, Schwartsmann G, Fischer J, Nagel J, Futuro D, et al. (2008) Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surgical Neurology 70: 259-267.
61. Merkus P, Guchelaar HJ, Bosch A, Merkus FWHM (2003) Direct access of drugs to the human brain after intranasal drug administration? Neurology 60: 1669-1671.
62. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of Univalent Ions across Lamellae of Swollen Phospholipids. Journal of Molecular Biology 13: 238-&.
63. Chang HI, Yeh MK (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. International Journal of Nanomedicine 7: 49-60.
64. Symon Z, Peyser A, Tzemach D, Lyass O, Sucher E, et al. (1999) Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 86: 72-78.
65. O'Shaughnessy JA (2003) Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer 4: 318-328.
66. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1: 297-315.
67. Hong RL (2004) Liposomal anti-cancer drug researches the myth of long circulation. J Chinese Oncol Soc 20: 10-21.
68. Sawant RR, Torchilin VP (2010) Liposomes as 'smart' pharmaceutical nanocarriers. Soft Matter 6: 4026-4044.
69. Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine 8: 1509-1528.
70. Lasic DD (1998) Novel applications of liposomes. Trends in Biotechnology 16: 307-321.
71. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. International Journal of Pharmaceutics 154: 123-140.
72. Grull H, Langereis S (2012) Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. Journal of Controlled Release 161: 317-327.
73. Zhu L, Torchilin VP (2013) Stimulus-responsive nanopreparations for tumor targeting. Integrative Biology 5: 96-107.
74. Needham D, Anyarambhatla G, Kong G, Dewhirst MW (2000) A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Research 60: 1197-1201.
75. Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013: 705265.
76. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and Imaging. Aaps Journal 9: E128-E147.
77. Sato Y, Hatakeyama H, Sakurai Y, Hyodo M, Akita H, et al. (2012) A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. Journal of Controlled Release 163: 267-276.
78. Hatakeyama H, Murata M, Sato Y, Takahashi M, Minakawa N, et al. (2014) The systemic administration of an anti-miRNA oligonucleotide encapsulated pH-sensitive liposome results in reduced level of hepatic microRNA-122 in mice. Journal of Controlled Release 173: 43-50.
79. Torchilin VP (2010) Handbook of Experimental Pharmacology. In: F.B. Hofmann M, editor: Springer-Verlag Berlin Heidelberg. pp. 3-54.
80. Fenske DB, Cullis PR (2007) Liposome Technology. In: Gregoriadis G, editor. Volume II Entrapment of Drugs and Other Materials into Liposomes. Third ed: Informa Healthcare. pp. 30.
81. Gulati M, Grover M, Singh S, Singh M (1998) Lipophilic drug derivatives in liposomes. International Journal of Pharmaceutics 165: 129-168.
82. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066: 29-36.
83. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268: 235-237.
84. Maruyama K, Yuda T, Okamoto A, Ishikura C, Kojima S, et al. (1991) Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem Pharm Bull (Tokyo) 39: 1620-1622.
85. Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1062: 77-82.
86. Degennes PG (1980) Conformations of Polymers Attached to an Interface. Macromolecules 13: 1069-1075.
87. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine 1: 297-315.
88. Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1146: 157-168.
89. Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13: 527-537.
90. Lasic DD (1994) Angew Chem, Int Ed Engl 33: 1785-1799.
91. Senior J, Gregoriadis G (1982) Is Half-Life of Circulating Liposomes Determined by Changes in Their Permeability. Febs Letters 145: 109-114.
92. Nishikawa K, Arai H, Inoue K (1990) Scavenger Receptor-Mediated Uptake and Metabolism of Lipid Vesicles Containing Acidic Phospholipids by Mouse Peritoneal-Macrophages. Journal of Biological Chemistry 265: 5226-5231.
93. Funato K, Yoda R, Kiwada H (1992) Contribution of Complement-System on Destabilization of Liposomes Composed of Hydrogenated Egg Phosphatidylcholine in Rat Fresh Plasma. Biochimica Et Biophysica Acta 1103: 198-204.
94. Senior JH (1987) Fate and Behavior of Liposomes Invivo - a Review of Controlling Factors. Crc Critical Reviews in Therapeutic Drug Carrier Systems 3: 123-193.
95. Mayer LD, Tai LCL, Ko DSC, Masin D, Ginsberg RS, et al. (1989) Influence of Vesicle Size, Lipid-Composition, and Drug-to-Lipid Ratio on the Biological-Activity of Liposomal Doxorubicin in Mice. Cancer Research 49: 5922-5930.
96. Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD (1995) Sphingomyelin-Cholesterol Liposomes Significantly Enhance the Pharmacokinetic and Therapeutic Properties of Vincristine in Murine and Human Tumor-Models. British Journal of Cancer 72: 896-904.
97. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 4: 145-160.
98. Allen TM, Cullis PR (2004) Drug delivery systems: Entering the mainstream. Science 303: 1818-1822.
99. Charrois GJR, Allen TM (2003) Rate of biodistribution of STEALTH((R)) liposomes to tumor and skin: influence of liposome diameter and implications for toxicity and therapeutic activity. Biochimica Et Biophysica Acta-Biomembranes 1609: 102-108.
100. Zalipsky S, Qazen M, Walker JA, Mullah N, Quinn YP, et al. (1999) New detachable poly(ethylene glycol) conjugates: Cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjugate Chemistry 10: 703-707.
101. Roux E, Passirani C, Scheffold S, Benoit JP, Leroux JC (2004) Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. Journal of Controlled Release 94: 447-451.
102. Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70: 95-111.
103. Szoka F, Papahadjopoulos D (1978) Procedure for Preparation of Liposomes with Large Internal Aqueous Space and High Capture by Reverse-Phase Evaporation. Proceedings of the National Academy of Sciences of the United States of America 75: 4194-4198.
104. Huang CH (1969) Studies on Phosphatidylcholine Vesicles . Formation and Physical Characteristics. Biochemistry 8: 344-&.
105. Mimms LT, Zampighi G, Nozaki Y, Tanford C, Reynolds JA (1981) Phospholipid Vesicle Formation and Transmembrane Protein Incorporation Using Octyl Glucoside. Biochemistry 20: 833-840.
106. Szebeni J, Breuer JH, Szelenyi JG, Bathori G, Lelkes G, et al. (1984) Oxidation and Denaturation of Hemoglobin Encapsulated in Liposomes. Biochimica Et Biophysica Acta 798: 60-67.
107. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, et al. (2012) Preparation, Characterization and application of liposomes: state of the art. Journal of Colloid Science and Biotechnology 1: 147-168.
108. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, et al. (2013) Liposome: classification, preparation, and applications. Nanoscale Research Letters 8.
109. Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of Liposomes of Defined Size Distribution by Extrusion through Polycarbonate Membranes. Biochimica Et Biophysica Acta 557: 9-23.
110. Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of Multilamellar and Unilamellar Phospholipid-Vesicles. Chemistry and Physics of Lipids 40: 89-107.
111. Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of Large Unilamellar Vesicles by a Rapid Extrusion Procedure - Characterization of Size Distribution, Trapped Volume and Ability to Maintain a Membrane-Potential. Biochimica Et Biophysica Acta 812: 55-65.
112. Mui B, Chow L, Hope MJ (2003) Extrusion technique to generate liposomes of defined size. Liposomes, Pt A 367: 3-14.
113. Mayer LD, Hope MJ, Cullis PR, Janoff AS (1985) Solute Distributions and Trapping Efficiencies Observed in Freeze-Thawed Multilamellar Vesicles. Biochimica Et Biophysica Acta 817: 193-196.
114. Nayar R, Hope MJ, Cullis PR (1989) Generation of Large Unilamellar Vesicles from Long-Chain Saturated Phosphatidylcholines by Extrusion Technique. Biochimica Et Biophysica Acta 986: 200-206.
115. Mui B, Hope MJ (2007) Liposome Technology. In: Gregoriadis G, editor. Volume I Liposome Preparation and Related Techniques. Third ed: Informa Healthcare USA, Inc. pp. 55-66.
116. www.northernlipids.com.
117. www.avantilipids.com.
118. www.avestin.com.
119. Macdonald RC, Macdonald RI, Menco BPM, Takeshita K, Subbarao NK, et al. (1991) Small-Volume Extrusion Apparatus for Preparation of Large, Unilamellar Vesicles. Biochimica Et Biophysica Acta 1061: 297-303.
120. Allen TM, Hansen CB, Demenezes DEL (1995) Pharmacokinetics of Long-Circulating Liposomes. Advanced Drug Delivery Reviews 16: 267-284.
121. Hwang KJ (1987) Liposome pharmacokinetics; Ostro MJ, editor: Dekker, New York. 109-156 p.
122. Barenholz Y (2001) Liposome application: problems and prospects. Current Opinion in Colloid & Interface Science 6: 66-77.
123. Cullis PR (2000) Liposomes by accident - Commentary. Journal of Liposome Research 10: Ix-Xxiv.
124. Barenholz Y (2007) Liposome Technology. In: Gregoriadis G, editor. Volume II Entrapment of Drugs and Other Materials into Liposomes third ed: Informa Healthcare USA, Inc. pp. 1-25.
125. Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane Ammonium-Sulfate Gradients in Liposomes Produce Efficient and Stable Entrapment of Amphipathic Weak Bases. Biochimica Et Biophysica Acta 1151: 201-215.
126. Lasic DD, Frederik PM, Stuart MCA, Barenholz Y, Mcintosh TJ (1992) Gelation of Liposome Interior - a Novel Method for Drug Encapsulation. Febs Letters 312: 255-258.
127. Lasic DD, Ceh B, Stuart MCA, Guo L, Frederik PM, et al. (1995) Transmembrane Gradient Driven Phase-Transitions within Vesicles - Lessons for Drug-Delivery. Biochimica Et Biophysica Acta-Biomembranes 1239: 145-156.
128. Barenholz Y, Amselem S, Goren D, Cohen R, Gelvan D, et al. (1993) Stability of Liposomal Doxorubicin Formulations - Problems and Prospects. Medicinal Research Reviews 13: 449-491.
129. Mayer LD, Bally MB, Cullis PR (1986) Uptake of Adriamycin into Large Unilamellar Vesicles in Response to a Ph Gradient. Biochimica Et Biophysica Acta 857: 123-126.
130. Jensen SS, Andresen TL, Davidsen J, Hoyrup P, Shnyder SD, et al. (2004) Secretory phospholipase A(2) as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids. Molecular Cancer Therapeutics 3: 1451-1458.
131. Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Progress in Lipid Research 44: 68-97.
132. Horowitz AT, Barenholz Y, Gabizon AA (1992) Invitro Cytotoxicity of Liposome-Encapsulated Doxorubicin - Dependence on Liposome Composition and Drug Release. Biochimica Et Biophysica Acta 1109: 203-209.
133. Strebhardt K, Ullrich A (2008) Paul Ehrlich's magic bullet concept: 100 years of progress. Nature Reviews Cancer 8: 473-480.
134. Huang FYJ, Chen WJ, Lee WY, Lo ST, Lee TW, et al. (2013) In Vitro and in Vivo Evaluation of Lactoferrin-Conjugated Liposomes as a Novel Carrier to Improve the Brain Delivery. International Journal of Molecular Sciences 14: 2862-2874.
135. Ishida T, Iden DL, Allen TM (1999) A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. Febs Letters 460: 129-133.
136. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong KL, et al. (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Research 66: 6732-6740.
137. Yang T, Choi MK, Cui FD, Kim JS, Chung SJ, et al. (2007) Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. Journal of Controlled Release 120: 169-177.
138. Allen TM, Hansen C (1991) Pharmacokinetics of Stealth Versus Conventional Liposomes - Effect of Dose. Biochimica Et Biophysica Acta 1068: 133-141.
139. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin - Review of animal and human studies. Clinical Pharmacokinetics 42: 419-436.
140. Shargel L, Yu ABC (1999) Applied biopharmaceutics and pharmacokinetics; Hill M, editor. 768 p.
141. Allen TM (2007) Liposome Technology. In: Gregoriadis G, editor. Volume III Interactions of Liposomes with the Biological Milieu. three ed: Informa Healthcare USA, Inc. pp. 49-64.
142. Charrois GJR, Allen TM (2004) Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochimica Et Biophysica Acta-Biomembranes 1663: 167-177.
143. Bibi S, Lattmann E, Mohammed AR, Perrie Y (2012) Trigger release liposome systems: local and remote controlled delivery? Journal of Microencapsulation 29: 262-276.
144. Ross DS (2011) Radioiodine Therapy for Hyperthyroidism. New England Journal of Medicine 364: 542-550.
145. Fahey F, Zukotynski K, Capala J, Knight N, Targeted NSJW (2014) Targeted Radionuclide Therapy: Proceedings of a Joint Workshop Hosted by the National Cancer Institute and the Society of Nuclear Medicine and Molecular Imaging. Journal of Nuclear Medicine 55: 337-348.
146. Das T, Pillai MRA (2013) Options to meet the future global demand of radionuclides for radionuclide therapy. Nuclear Medicine and Biology 40: 23-32.
147. Sorensen BS, Overgaard J, Bassler N (2011) In vitro RBE-LET dependence for multiple particle types. Acta Oncologica 50: 757-U268.
148. Dash A, Knapp FF, Pillai MR (2013) Targeted radionuclide therapy--an overview. Curr Radiopharm 6: 152-180.
149. Del Vecchio S, Zanneti A, Fonti R, Pace L, Salvatore M (2007) Nuclear imaging in cancer theranostics. Quarterly Journal of Nuclear Medicine and Molecular Imaging 51: 152-163.
150. Lee DY, Li KCP (2011) Molecular Theranostics: A Primer for the Imaging Professional. American Journal of Roentgenology 197: 318-324.
151. Sofou S (2008) Radionuclide carriers for targeting of cancer. International Journal of Nanomedicine 3: 181-199.
152. Barendsen GW, Walter HMD, Bewley DK, Fowler JF (1963) Effects of Different Ionizing Radiations on Human Cells in Tissue Culture .3. Experiments with Cyclotron-Accelerated Alpha-Particles and Deuterons. Radiation Research 18: 106-&.
153. Noddack I, Noddack W (1927) Z Phys Chem 125: 264-274.
154. Bernal P, Raoul JL, Vidmar G, Sereegotov E, Sundram FX, et al. (2007) Intra-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: Results of an IAEA-sponsored multination study. International Journal of Radiation Oncology Biology Physics 69: 1448-1455.
155. Bernal P, Raoul JL, Stare J, Sereegotov E, Sundram FX, et al. (2008) International Atomic Energy Agency-sponsored multination study of intra-arterial rhenium-188-labeled lipiodol in the treatment of inoperable hepatocellular carcinoma: Results with special emphasis on prognostic value of dosimetric study. Seminars in Nuclear Medicine 38: S40-S45.
156. Edelman MJ, Clamon G, Kahn D, Magram M, Lister-James J, et al. (2009) Targeted Radiopharmaceutical Therapy for Advanced Lung Cancer Phase I Trial of Rhenium Re 188 P2045, a Somatostatin Analog. Journal of Thoracic Oncology 4: 1550-1554.
157. Lam MGEH, Bosma TB, van Rijk PP, Zonnenberg BA (2009) Re-188-HEDP combined with capecitabine in hormone-refractory prostate cancer patients with bone metastases: a phase I safety and toxicity study. European Journal of Nuclear Medicine and Molecular Imaging 36: 1425-1433.
158. Torres LA, Coca MA, Batista JF, Casaco A, Lopez G, et al. (2008) Biodistribution and internal dosimetry of the Re-188-labelled humanized monoclonal antibody anti-epidemal growth factor receptor, nimotuzumab, in the locoregional treatment of malignant gliomas. Nuclear Medicine Communications 29: 66-75.
159. Blower PJ, Lam ASK, O'Doherty MJ, Kettle AG, Coakley AJ, et al. (1998) Pentavalent rhenium-188 dimercaptosuccinic acid for targeted radiotherapy: synthesis and preliminary animal and human studies. European Journal of Nuclear Medicine 25: 613-621.
160. Shamim SA, Kumar R, Halanaik D, Kumar A, Shandal V, et al. (2010) Role of rhenium-188 tin colloid radiosynovectomy in patients with inflammatory knee joint conditions refractory to conventional therapy. Nuclear Medicine Communications 31: 814-820.
161. Liepe K, Zaknun JJ, Padhy A, Barrenechea E, Soroa V, et al. (2011) Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Annals of Nuclear Medicine 25: 317-323.
162. Wohrle J, Krause BJ, Nusser T, Mottaghy FM, Habig T, et al. (2006) Intracoronary beta-brachytherapy using a rhenium-188 filled balloon catheter in restenotic lesions of native coronary arteries and venous bypass grafts. European Journal of Nuclear Medicine and Molecular Imaging 33: 1314-1320.
163. Hang CL, Hsieh BT, Wu CJ, Yip HK, Yang CH, et al. (2011) Six-Year Clinical Follow-up After Treatment of Diffuse In-Stent Restenosis With Cutting Balloon Angioplasty Followed by Intracoronary Brachytherapy With Liquid Rhenium-188-Filled Balloon via Transradial Approach. Circulation Journal 75: 113-120.
164. Huang FYJ, Lee TW, Chang CH, Chen LC, Hsu WH, et al. (2015) Evaluation of Re-188-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model. International Journal of Nanomedicine 10: 463-473.
165. Knapp FF, Pillai MRA, Osso JA, Dash A (2014) Re-emergence of the important role of radionuclide generators to provide diagnostic and therapeutic radionuclides to meet future research and clinical demands. Journal of Radioanalytical and Nuclear Chemistry 302: 1053-1068.
166. Rosch F (2013) Past, present and future of 68Ge/68Ga generators. Appl Radiat Isot 76: 24-30.
167. Huclier-Markai S, Kerdjoudj R, Alliot C, Bonraisin AC, Michel N, et al. (2014) Optimization of reaction conditions for the radiolabeling of DOTA and DOTA-peptide with (44m/44)Sc and experimental evidence of the feasibility of an in vivo PET generator. Nucl Med Biol 41 Suppl: e36-43.
168. Lewis RE, Eldridge JS (1966) Production of 70-Day Tungsten-188 and Development of a 17 Hour Rhenium-188 Radioisotope Generator. Journal of Nuclear Medicine 7: 804-&.
169. Pillai MRA, Dash A, Knapp FF (2012) Rhenium-188: availability from he 188W/188Re generator and status of current applications. Current Radiopharmaceuticals 5: 228-243.
170. Knapp FF, Callahan AP, Beets AL, Mirzadeh S, Hsieh BT (1994) Processing of Reactor-Produced W-188 for Fabrication of Clinical-Scale Alumina-Based W-188/Re-188 Generators. Applied Radiation and Isotopes 45: 1123-1128.
171. Dash A, Knapp FF, Pillai MRA (2013) Mo-99/Tc-99m separation: An assessment of technology options. Nuclear Medicine and Biology 40: 167-176.
172. Alberto R (2012) Application of technetium and rhenium in nuclear medicine. COSMOS 8: 83-101.
173. Gregoriadis G, Neerunjun DE (1974) Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem 47: 179-185.
174. Mauk MR, Gamble RC (1979) Preparation of Lipid Vesicles Containing High-Levels of Entrapped Radioactive Cations. Analytical Biochemistry 94: 302-307.
175. Buijs WCAM, Dams ETM, Oyen WJG, Boerman OC, Laverman P, et al. (1999) Patient dosimetry of technetium-99m-labelled PEG-liposomes. European Journal of Nuclear Medicine 26: 1048-1048.
176. Laverman P, Boerman OC, Oyen WJG, Dams ETM, Storm G, et al. (1999) Liposomes for scintigraphic detection of infection and inflammation. Advanced Drug Delivery Reviews 37: 225-235.
177. Turner AF, Presant CA, Proffitt RT, Williams LE, Winsor DW, et al. (1988) In-111-Labeled Liposomes - Dosimetry and Tumor Depiction. Radiology 166: 761-765.
178. Marik J, Tartis MS, Zhang H, Fung JY, Kheirolomoom A, et al. (2007) Long-circulating liposomes radiolabeled with [F-18]fluorodipalmitin ([F-18]FDP). Nuclear Medicine and Biology 34: 165-171.
179. Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, et al. (2011) Cu-64 loaded liposomes as positron emission tomography imaging agents. Biomaterials 32: 2334-2341.
180. Mougin-Degraef M, Jestin E, Bruel D, Remaud-Le Saec P, Morandeau L, et al. (2006) High-activity radio-iodine labeling of conventional and stealth liposomes. Journal of Liposome Research 16: 91-102.
181. Ting G, Tseng YL, Chang CH, Lee TW (2014) Handbook of Nanobiomedical Research. In: Torchilin V, editor. Fundamentals, Applications and Recent Developments: World Scientific Publishing Co Pte Ltd. pp. 77-125.
182. Hsu WH, Liu SY, Chang YJ, Chang CH, Ting G, et al. (2014) The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model. Nucl Med Biol 41: 765-771.
183. Petersen AL, Hansen AE, Gabizon A, Andresen TL (2012) Liposome imaging agents in personalized medicine. Advanced Drug Delivery Reviews 64: 1417-1435.
184. Elbayoumi T, Torchilin VP (2008) Nanoparticles in Biomedical Imaging. In: Bulte JWM, Modo MMJ, editors. Emerging Technologies and Applications: Springer International Publishing AG. pp. 211-236.
185. Mcdougal.Ir, Dunnick JK, Mcnamee MG, Kriss JP (1974) Distribution and Fate of Synthetic Lipid Vesicles in Mouse - Combined Radionuclide and Spin Label Study. Proceedings of the National Academy of Sciences of the United States of America 71: 3487-3491.
186. Hardy JG, Kellaway IW, Rogers J, Wilson CG (1980) The Distribution and Fate of I-131-Labelled Liposomes. Journal of Pharmacy and Pharmacology 32: 309-313.
187. Oku N, Tokudome Y, Tsukada H, Kosugi T, Namba Y, et al. (1996) In vivo trafficking of long-circulating liposomes in tumour-bearing mice determined by positron emission tomography. Biopharmaceutics & Drug Disposition 17: 435-441.
188. Holmberg E, Maruyama K, Litzinger DC, Wright S, Davis M, et al. (1989) Highly Efficient Immunoliposomes Prepared with a Method Which Is Compatible with Various Lipid Compositions. Biochemical and Biophysical Research Communications 165: 1272-1278.
189. Love WG, Amos N, Williams BD, Kellaway IW (1989) Effect of Liposome Surface-Charge on the Stability of Technetium (Tc-99m) Radiolabeled Liposomes. Journal of Microencapsulation 6: 105-113.
190. Laverman P, Dams ET, Oyen WJ, Storm G, Koenders EB, et al. (1999) A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J Nucl Med 40: 192-197.
191. Hnatowich DJ, Friedman B, Clancy B, Novak M (1981) Labeling of preformed liposomes with Ga-67 and Tc-99m by chelation. J Nucl Med 22: 810-814.
192. Oku N, Yamashita M, Katayama Y, Urakami T, Hatanaka K, et al. (2011) PET imaging of brain cancer with positron emitter-labeled liposomes. Int J Pharm 403: 170-177.
193. Phillips WT, Rudolph AS, Goins B, Timmons JH, Klipper R, et al. (1992) A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Int J Rad Appl Instrum B 19: 539-547.
194. Bao A, Goins B, Klipper R, Negrete G, Mahindaratne M, et al. (2003) A novel liposome radiolabeling method using Tc-99m-"SNS/S" complexes: In vitro and in vivo evaluation. Journal of Pharmaceutical Sciences 92: 1893-1904.
195. Hwang KJ, Merriam JE, Beaumier PL, Luk KFS (1982) Encapsulation, with High-Efficiency, of Radioactive Metal-Ions in Liposomes. Biochimica Et Biophysica Acta 716: 101-109.
196. Corvo ML, Boerman OC, Oyen WJG, Van Bloois L, Cruz MEM, et al. (1999) Intravenous administration of superoxide dismutase entrapped in long circulating liposomes. Biochimica Et Biophysica Acta-Biomembranes 1419: 325-334.
197. Laverman P, Storm G, Phillips WT, Bao A, Goins B (2007) Liposome Technology Third Edition. In: Gregoriadis G, editor. Volume II Entrapment of Drugs and Other Materials into Liposomes: Informa Healthcare USA, Inc. pp. 169-186.
198. Goins BA, Bao A, Phillips WT (2010) Techniques for Loading Technetium-99m and Rhenium-186/188 Radionuclides into Pre-formed Liposomes for Diagnostic Imaging and Radionuclide Therapy. Methods in Molecular Biology 606: 469-491.
199. Bao AD, Goins B, Klipper R, Negrete G, Phillips WT (2004) Direct Tc-99m labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. Journal of Pharmacology and Experimental Therapeutics 308: 419-425.
200. Phillips WT, Goins BA, Bao A (2009) Radioactive liposomes. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 1: 69-83.
201. Medina LA, Goins B, Rodriguez-Villafuerte M, Bao A, Martinez-Davalos A, et al. (2007) Spatial dose distributions in solid tumors from Re-186 transported by liposomes using HS radiochromic media. European Journal of Nuclear Medicine and Molecular Imaging 34: 1039-1049.
202. Wang SX, Bao A, Herrera SJ, Phillips WT, Goins B, et al. (2008) Intraoperative Re-186-liposome radionuclide therapy in a head and neck squamous cell carcinoma xenograft positive surgical margin model. Clinical Cancer Research 14: 3975-3983.
203. Soundararajan A, Bao A, Phillips WT, Perez R, Goins BA (2009) [Re-186]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nuclear Medicine and Biology 36: 515-524.
204. French JT, Goins B, Saenz M, Li SH, Garcia-Rojas X, et al. (2010) Interventional Therapy of Head and Neck Cancer with Lipid Nanoparticle-carried Rhenium 186 Radionuclide. Journal of Vascular and Interventional Radiology 21: 1271-1279.
205. Hrycushko BA, Li SH, Goins B, Otto RA, Bao AD (2011) Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution. Medical Physics 38: 1339-1347.
206. Soundararajan A, Dodd GD, 3rd, Bao A, Phillips WT, McManus LM, et al. (2011) Chemoradionuclide therapy with 186Re-labeled liposomal doxorubicin in combination with radiofrequency ablation for effective treatment of head and neck cancer in a nude rat tumor xenograft model. Radiology 261: 813-823.
207. Soundararajan A, Bao A, Phillips WT, McManus LM, Goins BA (2011) Chemoradionuclide therapy with 186re-labeled liposomal doxorubicin: toxicity, dosimetry, and therapeutic response. Cancer Biother Radiopharm 26: 603-614.
208. Chang YJ, Chang CH, Chang TJ, Yu CY, Chen LC, et al. (2007) Biodistribution, pharmacokinetics and microSPECT/CT imaging of Re-188-BMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Research 27: 2217-2225.
209. Chen MH, Chang CH, Chang YJ, Chen LC, Yu CY, et al. (2010) MicroSPECT/CT Imaging and Pharmacokinetics of Re-188-(DXR)-liposome in Human Colorectal Adenocarcinoma-bearing Mice. Anticancer Research 30: 65-72.
210. Lin YY, Chang CH, Li JJ, Stabin MG, Chang YJ, et al. (2011) Pharmacokinetics and Dosimetry of In-111/Re-188-Labeled PEGylated Liposomal Drugs in Two Colon Carcinoma-Bearing Mouse Models. Cancer Biotherapy and Radiopharmaceuticals 26: 373-380.
211. Chang CH, Chang YJ, Lee TW, Ting G, Chang KP (2012) Dosimetric evaluation of nanotargeted Re-188-liposome with the MIRDOSE3 and OLINDA/EXM programs. Annals of Nuclear Medicine 26: 419-425.
212. Chang YJ, Yu CY, Hsu CW, Lee WC, Chen SJ, et al. (2012) Molecular imaging and therapeutic efficacy of Re-188-(DXR)-liposome-BBN in AR42J pancreatic tumor-bearing mice. Oncology Reports 28: 1736-1742.
213. Chen LC, Wu YH, Liu IH, Ho CL, Lee WC, et al. (2012) Pharmacokinetics, dosimetry and comparative efficacy of Re-188-liposome and 5-FU in a CT26-luc lung-metastatic mice model. Nuclear Medicine and Biology 39: 35-43.
214. Hsu CW, Chang YJ, Chang CH, Chen LC, Lan KL, et al. (2012) Comparative Therapeutic Efficacy of Rhenium-188 Radiolabeled-Liposome and 5-Fluorouracil in LS-174T Human Colon Carcinoma Solid Tumor Xenografts. Cancer Biotherapy and Radiopharmaceuticals 27: 481-489.
215. Chang YJ, Hsu CW, Chang CH, Lan KL, Ting G, et al. (2013) Therapeutic efficacy of Re-188-liposome in a C26 murine colon carcinoma solid tumor model. Investigational New Drugs 31: 801-811.
216. Chang YJ, Hsu WH, Chang CH, Lan KL, Ting G, et al. (2014) Combined therapeutic efficacy of Re-liposomes and sorafenib in an experimental colorectal cancer liver metastasis model by intrasplenic injection of C26- murine colon cancer cells. Mol Clin Oncol 2: 380-384.
217. Hrycushko BA, Gutierrez AN, Goins B, Yan W, Phillips WT, et al. (2011) Radiobiological characterization of post-lumpectomy focal brachytherapy with lipid nanoparticle-carried radionuclides. Phys Med Biol 56: 703-719.
218. Hrycushko BA, Li S, Shi C, Goins B, Liu Y, et al. (2011) Postlumpectomy focal brachytherapy for simultaneous treatment of surgical cavity and draining lymph nodes. Int J Radiat Oncol Biol Phys 79: 948-955.
219. Liu CM, Lee WC, Yu CY, Lan KL, Chang CH, et al. (2012) Comparison of the therapeutic efficacy of 188Rhenium-liposomes and liposomal doxorubicin in a 4T1 murine orthotopic breast cancer model. Oncol Rep 27: 678-684.
220. Lin LT, Chang CH, Yu HL, Liu RS, Wang HE, et al. (2014) Evaluation of the Therapeutic and Diagnostic Effects of PEGylated Liposome-Embedded Re-188 on Human Non-Small Cell Lung Cancer Using an Orthotopic Small-Animal Model. Journal of Nuclear Medicine 55: 1864-1870.
221. Kostarelos K, Emfietzoglou D (2000) Tissue dosimetry of liposome-radionuclide complexes for internal radiotherapy: Toward liposome-targeted therapeutic radiopharmaceuticals. Anticancer Research 20: 3339-3345.
222. Emfietzoglou D, Kostarelos K, Sgouros G (2001) An analytic dosimetry study for the use of radionuclide-liposome conjugates in internal radiotherapy. Journal of Nuclear Medicine 42: 499-504.
223. Syme AM, McQuarrie SA, Middleton JW, Fallone BG (2003) Dosimetric model for intraperitoneal targeted liposomal radioimmunotherapy of ovarian cancer micrometastases. Physics in Medicine and Biology 48: 1305-1320.
224. Emfietzoglou D, Kostarelos K, Papakostas A, Yang WH, Ballangrud A, et al. (2005) Liposome-mediated radiotherapeutics within avascular tumor spheroids: Comparative dosimetry study for various radionuclides, liposome systems, and a targeting antibody. Journal of Nuclear Medicine 46: 89-97.
225. Liu CM, Chang CH, Chang YJ, Hsu CW, Chen LC, et al. (2010) Preliminary evaluation of acute toxicity of Re-188-BMEDA-liposome in rats. Journal of Applied Toxicology 30: 680-687.
226. Liu CM, Tsai CC, Yu CY, Lee WC, Ho CL, et al. (2013) Extended acute toxicity study of Re-188-liposome in Rats. Journal of Applied Toxicology 33: 886-893.
227. Liu SY, Chang CH, Lee TW (2014) Single dose acute toxicity testing for N,N-bis(2-mercaptoethyl)-N ',N ' diethylethylenediamine in beagles. Regulatory Toxicology and Pharmacology 69: 217-225.
228. Seo JW, Mahakian LM, Kheirolomoom A, Zhang H, Meares CF, et al. (2010) Liposomal Cu-64 Labeling Method Using Bifunctional Chelators: Poly(ethylene glycol) Spacer and Chelator Effects. Bioconjugate Chemistry 21: 1206-1215.
229. Hafeli U, Tiefenauer LX, Schubiger PA, Weder HG (1991) A Lipophilic Complex with Re-186/Re-188 Incorporated in Liposomes Suitable for Radiotherapy. Nuclear Medicine and Biology 18: 449-454.
230. Bao A, Zhao X, Phillips WT, Woolley FR, Otto RA, et al. (2005) Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution. Medical Physics 32: 200-208.
231. Zavaleta CL, Goins BA, Bao A, McManus LM, McMahan CA, et al. (2008) Imaging of 186Re-liposome therapy in ovarian cancer xenograft model of peritoneal carcinomatosis. J Drug Target 16: 626-637.
232. Chang CH, Stabin MG, Chang YJ, Chen LC, Chen MH, et al. (2008) Comparative Dosimetric Evaluation of Nanotargeted Re-188-(DXR)-Liposome for Internal Radiotherapy. Cancer Biotherapy and Radiopharmaceuticals 23: 749-758.
233. Chang CH, Chiu SP, Chiang TC, Lee TW (2011) Acute intravenous injection toxicity of BMEDA in mice. Drug and Chemical Toxicology 34: 20-24.
234. Huang FYJ, Lee TW, Kao CHK, Chang CH, Zhang XN, et al. (2011) Imaging, Autoradiography, and Biodistribution of Re-188-Labeled PEGylated Nanoliposome in Orthotopic Glioma Bearing Rat Model. Cancer Biotherapy and Radiopharmaceuticals 26: 717-725.
235. Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30: 2302-2318.
236. Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, et al. (2007) Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2: 751-760.
237. Raizer RJ (2005) HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. Journal of Neuro-Oncology 74: 77-86.
238. Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. Journal of Clinical Oncology 24: 1253-1265.
239. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, et al. (2007) A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Letters 7: 3759-3765.
240. Koukourakis MI, Koukouraki S, Fezoulidis I, Kelekis N, Kyrias G, et al. (2000) High intratumoural accumulation of stealth (R) liposomal doxorubicin (Caelyx (R)) in glioblastomas and in metastatic brain tumours. British Journal of Cancer 83: 1281-1286.
241. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, et al. (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clinical Cancer Research 7: 243-254.
242. Khalifa A, Dodds D, Rampling R, Paterson J, Murray T (1997) Liposomal distribution in malignant glioma: Possibilities for therapy. Nuclear Medicine Communications 18: 17-23.
243. Hsieh BT, Lin WY, Luo TY, Cheng KY (2007) Production of carrier-free Re-188 in the past ten years in Taiwan. Journal of Radioanalytical and Nuclear Chemistry 274: 569-573.
244. Huang FY, Huang LK, Lin WY, Luo TY, Tsai CS, et al. (2009) Development of a thermosensitive hydrogel system for local delivery of Re-188 colloid drugs. Applied Radiation and Isotopes 67: 1405-1411.
245. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. Journal of Neuro-Oncology 94: 299-312.
246. Mathieu D, Lecomte R, Tsanaclis AM, Larouche A, Fortin D (2007) Standardization and detailed characterization of the syngeneic Fischer/F98 glioma model. Canadian Journal of Neurological Sciences 34: 296-306.
247. Tseng YL, Hong RL, Tao MH, Chang FH (1999) Sterically stabilized anti-idiotype immunoliposomes improve the therapeutic efficacy of doxorubicin in a murine B-cell lymphoma model. International Journal of Cancer 80: 723-730.
248. Bartlett GR (1959) Phosphorus Assay in Column Chromatography. Journal of Biological Chemistry 234: 466-468.
249. Li SD, Chen YC, Hackett MJ, Huang L (2008) Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Molecular Therapy 16: 163-169.
250. Lee WC, Hwang JJ, Tseng YL, Wang HE, Chang YF, et al. (2006) Therapeutic efficacy evaluation of (111)in-VNB-liposome on human colorectal adenocarcinoma HT-29/luc mouse xenografts. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 569: 497-504.
251. Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, et al. (2009) Therapeutic Efficacy Evaluation of In-111-Labeled PEGylated Liposomal Vinorelbine in Murine Colon Carcinoma with Multimodalities of Molecular Imaging. Journal of Nuclear Medicine 50: 2073-2081.
252. Poste G, Bucana C, Raz A, Bugelski P, Kirsh R, et al. (1982) Analysis of the Fate of Systemically Administered Liposomes and Implications for Their Use in Drug Delivery. Cancer Research 42: 1412-1422.
253. Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O (2004) Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treatment Reviews 30: 415-423.
254. Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H, et al. (2004) Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathologica 107: 272-276.
255. Ogihara I, Kojima S, Jay M (1986) Differential Uptake of Gallium-67-Labeled Liposomes between Tumors and Inflammatory Lesions in Rats. Journal of Nuclear Medicine 27: 1300-1307.
256. Pardridge WM (1999) Non-invasive drug delivery to the human brain using endogenous blood-brain barrier transport systems. Pharmaceutical Science & Technology Today 2: 49-59.
257. Mamot C, Drummond DC, Noble CO, Kallab V, Guo ZX, et al. (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Research 65: 11631-11638.
258. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology 2: 127-137.
259. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 20052009. Neuro-Oncology 14: v1-v49.
260. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery 7: 771-782.
261. Chang YJ, Chang CH, Yu CY, Chang TJ, Chen LC, et al. (2010) Therapeutic efficacy and microSPECT/CT imaging of (188)Re-DXR-liposome in a C26 murine colon carcinoma solid tumor model. Nuclear Medicine and Biology 37: 95-104.
262. Huang FYJ, Lee TW, Kao CHK, Chang CH, Zhang XN, et al. (2011) Imaging, Autoradiography, and Biodistribution of (188)Re-Labeled PEGylated Nanoliposome in Orthotopic Glioma Bearing Rat Model. Cancer Biotherapy and Radiopharmaceuticals 26: 717-725.
263. Phillips WT, Bao A, Brenner AJ, Goins BA (2014) Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 76C: 39-59.
264. Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, et al. (2008) Diagnostic and therapeutic evaluation of In-111-vinorelbine-liposomes in a human colorectal carcinoma HT-29/luc-bearing animal model. Nuclear Medicine and Biology 35: 623-634.
265. Bryant MJ, Chuah TL, Luff J, Lavin MF, Walker DG (2008) A novel rat model for glioblastoma multiforme using a bioluminescent F98 cell line. Journal of Clinical Neuroscience 15: 545-551.
266. Reilly RM, Chen P, Wang J, Scollard D, Cameron R, et al. (2006) Preclinical pharmacokinetic, biodistribution, toxicology, and dosimetry studies of In-111-DTPA-human epidermal growth factor: An Auger electron-emitting radiotherapeutic agent for epidermal growth factor receptor-positive breast cancer. Journal of Nuclear Medicine 47: 1023-1031.
267. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. Journal of Nuclear Medicine 46: 1023-1027.
268. Chang CH, Stabin MG, Chang YJ, Chen LC, Chen MH, et al. (2008) Comparative Dosimetric Evaluation of Nanotargeted (188)Re-(DXR)-Liposome for Internal Radiotherapy. Cancer Biotherapy and Radiopharmaceuticals 23: 749-758.
269. Poduslo JF, Curran GL, Wengenack TM, Malester B, Duff K (2001) Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer's disease. Neurobiology of Disease 8: 555-567.
270. MacKay JA, Deen DF, Szoka FC (2005) Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Research 1035: 139-153.
271. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, et al. (1998) Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America 95: 4607-4612.
272. Towner RA, Gillespie DL, Schwager A, Saunders DG, Smith N, et al. (2013) Regression of glioma tumor growth in F98 and U87 rat glioma models by the Nitrone OKN-007. Neuro-Oncology 15: 330-340.
273. Xi GF, Rajaram V, Mania-Farnell B, Mayanil CS, Soares MB, et al. (2012) Efficacy of vincristine administered via convection-enhanced delivery in a rodent brainstem tumor model documented by bioluminescence imaging. Childs Nervous System 28: 565-574.
274. Barendsen GW (1962) Dose-Survival Curves of Human Cells in Tissue Culture Irradiated with Alpha-, Beta-, 20-Kv X- and 200-Kv X-Radiation. Nature 193: 1153-&.
275. Hsu WH, Liu SY, Chang YJ, Chang CH, Ting G, et al. (2014) The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of (188)Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model. Nucl Med Biol 41: 765-771.
276. Galizia G, Lieto E, De Vita F, Orditura M, Castellano P, et al. (2007) Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene 26: 3654-3660.
277. Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6: 8788-8806.
278. Pan XG, Wu G, Yang WL, Barth RF, Tjarks W, et al. (2007) Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjugate Chemistry 18: 101-108.
279. Wu G, Barth RF, Yang WL, Kawabata S, Zhang LW, et al. (2006) Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Molecular Cancer Therapeutics 5: 52-59.
280. Fani M, Maecke HR, Okarvi SM (2012) Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer. Theranostics 2: 481-501.
281. Liu ZF, Wang F, Chen XY (2008) Integrin alpha(v)beta(3)-Targeted Cancer Therapy. Drug Development Research 69: 329-339.
282. Zhang XZ, Xiong ZM, Wu Y, Cai WB, Tseng JR, et al. (2006) Quantitative PET imaging of tumor integrin alpha(v)beta(3) expression with F-18-FRGD2. Journal of Nuclear Medicine 47: 113-121.