簡易檢索 / 詳目顯示

研究生: 魏祥裕
Wei, Hsiang-Yu
論文名稱: 微藻溼藻體混合蓖麻油進行就地轉酯化反應製備生質柴油
Insitu Biodiesel Production from Wet Chlorella Vulgaris Blended with Castor Oil
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員: 王竹方
Wang, Chu-Fang
陳郁文
Chen, Yu-Wen
曾晴賢
Tseng, Ching-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 微藻蓖麻油就地轉酯化膨脹甲醇生質柴油
外文關鍵詞: microalgae, castor oil, in-situ transesterification, expanded methanol, biodiesel
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著人類社會的高度發展,對於能源的需求與日俱增,然而化石燃料終有枯竭之日,因此尋找替代能源成為目前人類必須要面對的重要課題。在眾多再生能源當中,生質能源因其原物料容易取得以及技術成熟等,一直被視為極具潛力的再生能源之一。而目前生質柴油原物料選擇上,由於微藻具有高生長速率、易栽培以及高含油量等特性,成為目前最被重視的研究主題之一。
      本研究使用之原物料為國立成功大學培養之Chlorella vulgaris的濕藻體,採用CO2膨脹甲醇(CO2-expanded methanol, CXM)的方法進行就地萃取轉酯化反應(In-situ extraction and transesterification)製備生質柴油,此方法能改善有機溶劑萃取與超臨界流體萃取的缺點並提高油脂在甲醇中的互溶性,同時藉由二氧化碳溶於微藻水分降低pH值有利於水解細胞壁。由於微藻是固體原料,在進行就地轉酯化反應時會使用較大量的甲醇以促進其攪拌與萃取進行,為了利用多餘的甲醇,本研究額外添加由國立清華大學曾晴賢教授提供的蓖麻油作為額外油源,期許能藉由添加額外油源增加每次反應的產量並有效利用多餘的甲醇。
      經由實驗,我們觀察到添加蓖麻油之後的總產率與微藻油的轉化率較只使用微藻有顯著的提升,顯示蓖麻油可作為微藻在進行萃取時的共溶劑使微藻萃取效果提升並提高轉化率。接著討論蓖麻油添加量、微藻含水量、反應溫度、壓力與反應時間等變因對脂肪酸甲酯(FAMEs)產率的影響。實驗結果顯示蓖麻油添加量較低會導致共溶劑能力降低,轉化率下降,添加過多導致醇油莫耳比下降也會降低轉化率,存在一最佳添加量;含水量提高兩種油的轉化率均下降,微藻油轉化率下降較明顯,但以乾藻進行反應蓖麻油的轉化率會降低,此時部分蓖麻油與微藻細胞膜表面形成氫鍵鍵結;反應溫度提高兩種油的轉化率皆提高,蓖麻油在230℃後發生裂解導致轉化率下降;在到達某一個壓力後,壓力對轉化率的影響會較小,本研究中1400psi以上產率便無明顯提升;反應時間延長雖會提高產率,大部分的反應在前30分鐘便已完成。
      本研究發現在微藻中混合蓖麻油進行就地轉酯化可以提高總產率,並比較不同變因對兩種油源轉化率的影響。此方法或可應用在其他植物油上,在進行生質柴油生產時提高產量並提高甲醇使用率,減少回收成本,具發展潛力。


    As the human society highly develops, the requirement of energy increases. However, the total amount of fossil fuel is limited, so finding alternative energy is important for human. Among the several kinds of alternative energy, bioenergy seems to be one of the promising alternative energy because of the accessible raw material and mature technology. For the choice of raw material of biodiesel, microalgae is one of the valued research topics since its high growing speed, easy to cultivate and high lipid content.
    In this research, we use the wet microalgae called Chlorella vulgaris cultivated by National Cheng Kung University as the raw material. We use the method of CO2-expanded methanol (CXM) to conduct in-situ extraction and transesterification to produce biodiesel. It can improve the organic solvent extraction and supercritical fluid extraction and increase the mutual solubility between oil and methanol. Carbon dioxide solutes in water can decrease the pH value and assist the hydrolysis of the cell wall of microalgae. Since microalgae is solid material, in the process of transesterification we need to use much methanol to assist the stir and extraction. To utilize extra methanol, we add the castor oil provided by Professor Tzeng Chyng-Shyan in National Tsing Hua University as another oil source. We hope we can increase the amount of product and utilize extra methanol by adding another oil source.
    By experiment, we observe the total yield and conversion yield of microalgae increase significantly after adding castor oil. It demonstrates that castor oil can serve as co-solvent of extraction of microalgae, improve the effect of extraction and increase the conversion yield. We discuss the factor that affected the yield of fatty acid methyl ester (FAMEs) includes the amount of castor oil added, moisture of microalgae, temperature, pressure and reaction time. The result shows that the yield decreases when the amount of castor oil decreases since the ability of co-solvent decreases, and the yield decreases when the amount of castor oil increases since the methanol-to-oil ratio decreases, so there is a best amount of castor oil added. Both yields of oil will decrease when the moisture increases, and microalgae oil is more obvious. However, the yield of castor oil is low if the microalgae is dry. It is because some of the castor oil forms hydrogen bond with cell membrane of microalgae. Yields of two kinds of oil increase as the temperature increases, and castor oil cracks at 230℃. When the pressure increases to a specific point, the effect of pressure for yield will decrease. In this research, the specific pressure is about 1400psi. Although increasing reaction time will increase the yield, most of the reaction is finished in 30 minutes.
    In this research, we find that blending castor oil with microalgae to conduct in-situ extraction and transesterification can increase total yield. We discuss different factors that affected the yield of two kinds of oil. This method may apply to other vegetable oil to increase yield and usage rate of methanol to reduce the cost of recycling, can be seen as a promising process.

    摘要 1 Abstract 3 目錄 5 圖目錄 6 表目錄 7 第一章 緒論 8 1-1前言 8 第二章 文獻回顧 10 2-1微藻生質能源發展 10 2-2 微藻前處理技術 15 2-2.1 物理性前處理 15 2-2.2 化學性前處理 16 2-2.3 生物性前處理 17 2-2.4 超臨界CO2前處理 17 2-3 微藻萃取技術 20 2-4 生質柴油製備 28 2-5 超臨界轉酯化 33 第三章 實驗裝置與操作流程 35 3-1 實驗流程與操作說明 35 3-1.1 索氏萃取 36 3-1.2微藻溼藻體混合蓖麻油以CO2膨脹甲醇進行就地轉酯化反應 37 3-1.3 後處理 38 3-1.4 產物分析 38 3-2 實驗儀器 38 3-3 實驗藥品 40 第四章 實驗結果與討論 41 4-1 微藻含油量分析 41 4-2 FAMEs產物分析 41 4-3 微藻濕藻體混合蓖麻油就地轉酯化 44 4-3.1 添加蓖麻油與否的影響 44 4-3.2 蓖麻油添加量的影響 45 4-3.3 微藻含水量的影響 46 4-3.4 反應溫度的影響 48 4-3.5 壓力的影響 50 4-3.6 反應時間的影響 51 第五章 結論與建議 53 第六章 參考文獻 55

    Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., Lim J. K., 2011. Microalgae As a Sustainable Energy Source for Biodiesel Production: A Review. Renewable and Sustainable Energy Reviews 15, 584-593.
    Anastopoulos, G., Zannikou, Y., Stournas S., Kalligeros, S., 2009. Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters. Energies 2, 362-376.
    Bahadar, A., Khan, M. B., 2013. Progress in Energy from Microalgae: A Review. Renewable and Sustainable Energy Reviews 27, 128-148.
    Billaud, F., Dominguez, V., Broutin, P., Busson, C., 1995. Production of Hydrocarbons by Pyrolysis of Methyl Esters from Rapeseed Oil. Journal of the American Oil Chemists' Society 72, 1149-1154.
    Boyd, A.R., Champagne, P., Mcginn, P.J., Macdougall, K.M., Melanson, J.E., Jessop, P.G., 2012. Switchable Hydrophilicity Solvents for Lipid Extraction from Microalgae for Biofuel Production. Bioresource Technology 118, 628-632.
    Bunyakiat, K., Makmee, S., Sawangkeaw, R., Ngamprasertsith, S., 2006. Continuous production of bio-diesel via transesterification from vegetable oils in supercritical methanol. Energy Fuels 20, 812-817.
    Cao, P., Tremblay, A.Y., Dubé, M.A., 2009. Kinetics of Canola Oil Transesterification in A Membrane Reactor. Industrial & Engineering Chemistry Research 48, 2533-2541.
    Chen, K. T., Cheng, C. H., Wu, Y. H., Lu, W. C., Lin, Y. H., Lee, H. T., 2013. Continuous Lipid Extraction of Microalgae Using High-pressure Carbon Dioxide. Bioresource Technology 146, 23-26.
    Cho, S.-C., Choi, W.-Y., Oh, S.-H., Lee, C.-G., Seo, Y.-C., Kim, J.-S., Song, C.-H., Kim, G.-V., Lee, S.-Y., Kang, D.-H., Lee, H.-Y., 2012. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. Journal of Biomedicine and Biotechnology 2012, 6.
    Chuang, M.H., Johannsen, M., 2009. Characterization of pH in Aqueous CO2-Systems.
    Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., Cintas, P., 2008. Improved Extraction of Vegetable Oils under High-Intensity Ultrasound and/or Microwaves. Ultrasonics Sonochemistry 15, 898–902.
    Daza Serna, L.V., Orrego Alzate, C.E., Cardona Alzate, C.A., 2016. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 199, 113-120.
    Del Valle, J.M., De la Fuente, J.C., Cardarelli, D.A., 2005. Contributions to supercritical extraction of vegetable substrates in Latin America. J. Food Eng. 67, 35-57.
    Encinar, J. M., Gonzalez, J. F., Rodriguez, J. J., Tejedor, A., 2002. Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara Cardunculus L. Oils with Ethanol. Energy & Fuels 16, 443-450.
    Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N. I., Vorobiev, E., 2014. Selective Extraction from Microalgae Nannochloropsis Sp. Using Different Methods of Cell Disruption. Bioresource Technology 153, 254–259.
    Halim, R., Gladman, B., Danquah, M.K., Webley, P.A., 2011. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 102, 178–185.
    Halim, R., Danquah, M.K., Webley, P.A., 2012. Extraction of Oil from Microalgae for Biodiesel Production: A Review. Biotechnology Advances 30, 709-732.
    Harun, R., Danquah, M. K., 2011. Influence of Acid Pre-Treatment on Microalgal Biomass for Bioethanol Production. Process Biochemistry 46, 304–309.
    He, H., Wang, T., Zhu, S., 2007. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86, 442–447.
    Heldebrant, D.J., Li, X., Eckert, C.A., Liotta, C.L., Jessop, P.G., 2005. Green Chemistry Reversible Nonpolar-To-Polar Solvent. Nature 436, 1102-1102.
    Herrero, M., Castro-Puyana, M., Mendiola, J.A. 2013. Compressed fluids for the extraction of bioactive compounds. TrAc-Trend. Anal. Chem. 43, 67-83.
    Huang, Y., Hong, A., Zhang, D., Li, L., 2014. Comparison of Cell Rupturing by Ozonation and Ultrasonication for Algal Lipid Extraction from Chlorella Vulgaris. Environmental Technology 35, 931–937.
    Jan, L., Nadine, I., Marlene, T., Andrea, S., Farah, Q., Ulrich, S., Thomas, B., 2017. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess and Biosystems Engineering 40, 911-918.
    Jessop, P.G., Subramaniam, B., 2007. Gas-Expanded Liquids. Chemical Reviews 107, 2666-2694.
    Joseph, K.B., Akash, A., Cristina, T., 2017. Possibilities for conversion of microalgae oil into aviation fuel: A review. Renewable and Sustainable Energy Reviews 80, 1345-1354.
    Kim, K. H., Hong, J., 2001. Supercritical CO2 Pretreatment of Lignocellulose Enhances Enzymatic Cellulose Hydrolysis. Bioresource Technology 77, 139-144.
    Kusdiana, D., Saka, S., 2004. Catalytic effect of metal reactor in transesterification of vegetable oil. J. Am. Oil Chem. Soc. 81, 103-104.
    Kusdiana, D., Saka, S., 2004. Effects of Water on Biodiesel Fuel Production by Supercritical Methanol Treatment. Bioresource Technology 91, 289-295.
    Kusdiana, D., Saka, S., 2004. Two-Step Preparation for Catalyst-Free Biodiesel Fuel Production. Applied Biochemistry and Biotechnology 115, 781-791.
    Lardon, L., Helias, A., Sialve, B., Steyer, J.P., Bernard O., 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43, 6475-6481.
    Ma, F., Hanna, M.A., 1999. Bio-diesel production: a review. Bioresource Technology 70, 1-15.
    Ma, Y.A., Cheng, Y.M., Huang, J.W., Jen, J.F., Huang, Y.S. Yu, C.C., 2014. Effects of Ultrasonic and Microwave Pretreatments on Lipid Extraction of Microalgae. Bioprocess and Biosystems Engineering 37, 1543–1549.
    Ma, Z., Shang, Z.-Y., Wang, E.-J., Xu, J.-C., Xu, Q.-Q., Yin, J.-Z., 2012. Biodiesel Production via Transesterification of Soybean Oil Using Acid Catalyst in CO2 Expanded Methanol Liquids. Industrial & Engineering Chemistry Research 51, 12199-12204.
    McMillan, J.R., Watson, I.A. Jaafar, M.A.W., 2013. Evaluation and Comparison of Algal Cell Disruption Methods: Microwave, Waterbath, Blender, Ultrasonic and Laser Treatment. Applied Energy 103, 128–134.
    Medina, A.R., Grima, E.M., Gimenez, A.G., Ibanez, M.J., 1998. Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances 16(3), 517-580.
    Miao, X., Wu, Q., 2006. Biodiesel Production from Heterotrophic Microalgal Oil. Bioresource Technology 97, 841-846.
    Mouahid, A., Crampon, C., Toudji, S.-A.A., Badens, E., 2013. Supercritical CO2 Extraction of Neutral Lipids from Microalgae: Experiments and Modelling. The Journal of Supercritical Fluids 77, 7-16.
    Narayanaswamy, N., Faik, A., Goetz D. J. Gu, T., 2011 Supercritical Carbon Dioxide Pretreatment of Corn Stover and Switchgrass for Lignocellulosic Ethanol Production. Bioresource Technology 102, 6995-7000.
    Park, J.Y., Oh, Y.K., Lee, J.S., Lee, K., Jeong, M.J. Choi, S.A., 2014. Acid-Catalyzed Hot-Water Extraction of Lipids from Chlorella Vulgaris. Bioresource Technology 153, 408–412.
    Park, J.Y., Park, M.S., Lee, Y.C., Yang, J.Y., 2015. Advances in direct transesterification of algal oils from wet biomass. Bioresource Technology 184, 267–275.
    Patil, P.D., Gude, V.G., Mannarswamy, A., Cooke, P., Nirmalakhandan, N., Lammers, P., Deng, S., 2012. Comparison of Direct Transesterification of Algal Biomass under Supercritical Methanol and Microwave Irradiation Conditions. Fuel 97, 822-831.
    Pieber, S., Schober, S., Mittelbach, M. 2012. Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. Biomass and Bioenergy 47, 474-482.
    Ranjan, A., Patil, C. Moholkar, V.S., 2010. Mechanistic Assessment of Microalgal Lipid Extraction. Industrial & Engineering Chemistry Research 49, 2979–2985.
    Reddy, H. K., Muppaneni, T., Patil, P. D., Ponnusamy, S., Cooke, P., Schaub, T., Deng, S., 2014. Direct Conversion of Wet Algae to Crude Biodiesel under Supercritical Ethanol Conditions. Fuel 115, 720-726.
    Reverchon, E., De Marco, I., 2006. Supercritical Fluid Extraction and Fractionation of Natural Matter. The Journal of Supercritical Fluids 38, 146-166.
    Saka, S., Isayama, Y., 2009. A New Process for Catalyst-Free Production of Biodiesel Using Supercritical Methyl Acetate. Fuel 88, 1307-1313.
    Saka, S., Kusdiana, D., 2001. Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol. Fuel 80, 225-231.
    Samarasinghe, N., Fernando, S., Lacey, R., Faulkner, W.B., 2012. Algal Cell Rupture Using High Pressure Homogenization as A Prelude yo Oil Extraction. Renewable Energy 48, 300-308.
    Samori, C., Lopez Barreiro, D., Vet, R., Pezzolesi, L., Brilman, D.W.F., Galletti, P., Tagliavini, E., 2013. Effective Lipid Extraction from Algae Cultures Using Switchable Solvents. Green Chemistry 15, 353-356.
    Schwab, A.W., Bagby, M.O., Freedman, B., 1987. Preparation and Properties of Diesel Fuels from Vegetable Oils. Fuel 66, 1372-1378.
    Singh, A., Nigam, P.S., Murphy, J.D., 2011. Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels. Bioresource Technology 102, 10-16.
    Smith, B., Greenwell, H.C., Whiting, A., 2009. Catalytic Upgrading of Tri-Glycerides and Fatty Acids to Transport Biofuels. Energy & Environmental Science 2, 262-271.
    Srivastava, A., Prasad, R., 2000. Triglycerides-Based Diesel Fuels. Renewable and Sustainable Energy Reviews 4, 111-133.
    Srinivasan, N., Ju, L.-K., 2010. Pretreatment of Guayule Biomass Using Supercritical Carbon Dioxide-Based Method. Bioresource Technology 101, 9785-9791.
    Virginjia, S., Violeta, M., Milda, G, 2016. Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: A review. Fuel Processing Technology 150, 78-87.
    Umdu, E.S., Tuncer, M., Seker, E., 2009. Transesterification of Nannochloropsis Oculata Microalga’S Lipid to Biodiesel on Al2O3 Supported CaO and MgO Catalysts. Bioresource Technology 100, 2828-2831.
    Warabi, Y., Kusdiana, D., Saka, S., 2004. Reactivity of Triglycerides and Fatty Acids of Rapeseed Oil in Supercritical Alcohols. Bioresource Technology 91, 283-287.
    Hsin-Chih Wang, Worasaung Klinthong, Yi-Hung Yang, Chung-Sung Tan, 2015. Continuous extraction of lipids from Schizochytrium sp. by CO2-expanded ethanol. Bioresource Technology 189, 162-168.
    Yi-Hung Yang, Worasaung Klinthong, Chung-Sung Tan, 2015. Optimization of continuous lipid extraction fromChlorella vulgarisby CO2-expanded methanol for biodiesel production. Bioresource Technology 198, 550-556.
    Yusoff, M. F. M., Xu, X., Guo, Z., 2014. Comparison of Fatty Acid Methyl and Ethyl Esters as Biodiesel Base Stock: a Review on Processing and Production Requirements. Journal of the American Oil Chemists' Society 91, 525-531.
    Zheng, H., Yin, J., Zhen, G., Haung, H., Ji, X., Dou, C., 2011. Disruption of Chlorella Vulgaris Cells for The Release of Biodiesel-Producing Lipids: a Comparison of Grinding, Ultrasonication, Bead Milling, Enzymartic Lysis, and Microwave. Applied Biochemistry and Biotechnology 164, 1215–1224.
    Zonouzi, A., Auli, M., Javanmard Dakheli, M., Hejazi, M.A., 2016. Oil Extraction from Microalgae Dunalliela sp. by Polar and Non-Polar Solvents. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 10, 638-641.

    QR CODE