研究生: |
徐裕雄 yu-hsiung hsu |
---|---|
論文名稱: |
複合材料法溫度補償光纖光柵壓力感測器之研究 Bi-Material Thermal compensation for a Fiber Bragg Grating Pressure Sensor |
指導教授: |
王立康
Li-Karn Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 複合材料 、光纖光柵 、壓力感測 、溫度補償 、布拉格光纖光柵 、熱漲冷縮 、槓桿 、熱膨脹 |
外文關鍵詞: | Bi-Material, Thermal compensation, Fiber Bragg Grating, Pressure Sensor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種利用複合材料的熱膨脹特性來實現溫度補償的布拉格光纖光柵壓力感測器架構,我們在實驗中利用槓桿以及彈簧的運作成功的將外界施加在系統上的壓力轉換成為在光纖光柵上的軸向應力,並且發展成可以隨環境需要而調整感測靈敏度的感測器架構。
在壓力感測的方面,我們不但得到壓力與布拉格反射波長間線性的量測結果。經由理論推導我們感測器的壓力感測靈敏度更可以達到 的程度。相較於其他已知文獻所提出的利用光纖光柵作為壓力感測器元件的研究而言,我們的研究具有不錯的量測靈敏度以及可靠度,在做為實際應用上的考量來看絕對具有潛力。
在消除溫度效應的方面,我們首先提出使用單一根布拉格光纖光柵來完成溫度補償的效果。利用到架構本身材料熱漲冷縮的特性,我們將這一個特性轉換用來消除光纖光柵因為溫度改變而伴隨之發生的溫度效應現象。經過我們的研究所得到的感測器不但不需要採用到複雜的調變以及解調變技術,布拉格光纖光柵本身也不需要經過任何的加工步驟,不但有效的減少了壓力量測系統在建購上面的成本付出,卻不用同時犧牲我們對消除溫度補償的要求標準。這對於本實驗架構在實用面向上的推展具有絕對的優勢。
本論文所提出的壓力感測器架構組成簡單,不需要繁複的公式來推導該感測器的感測表現。我們改測器的架構也符合成本控制上的要求,不需要昂貴的儀器做為感測元件,我們的感測器架構不但可以做為他人將來研究利用光纖光柵做為壓力感測元件相關研究時的一個參考,更重要的,我們所提出之利用單一根光纖實現溫度補償的構想也是將來各個光纖溫度補償的相關研究可以列入參考的設計之一。
[1] Nazarathy, M. Newton, S. A. Giffard, R. P. Moberly, D. S. Sischka, F. Trutna, W. R. Jr. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[2] N. J. Frigo, P. P. Iannone, K. C. Reichmann, Xiang Zhou, M. W Stodden, “Centralized in-service OTDR testing in a CWDM business access network,” J. Lightwave Technol. 22, 2641–2652 (2004).
[3] M. Suyama, R. I. Laming, D. N. Payne, “Temperature dependent gain and noise characteristics of a 1480 nm-pumped erbium-doped fibre amplifier,” Electron. Lett. 26, 1756–1758 (1990).
[4] V. Mizrahi, S. Alexander, J. Berthold, S. Chaddick, W. Jones, “The future of WDM systems,” Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications. 1, 137–141 (1997).
[5] R. W. Fallon, L. Zhang, A. Gloag, I. Bennion,〝Multiplexed identical broadband chirped grating interrogation system for large strain sensing application,〞IEEE Photon. Technol. Lett., 9, 1616-1618 (1997).
[6] S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, B. Lee,〝Temperature-independent dtrain sensor system using a titled fiber Bragg grating demodulator,〞IEEE Photon. Technol. Lett., 10, 1461-1463 (1998).
[7] W. C. Du, X. M. Tao, H. Y. Tam,〝Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,〞IEEE Photon. Technol. Lett., 11, 105-107 (1999).
[8] A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849–1854 (1999).
[9] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating-based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[10] L. A. Ferreira, E. V. Diatzikis, J. L. Santos, and F. Farahi, “Frequency-modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620–1630 (1998).
[11] A. Ezbiri, A. Munoz, S. E. Kanellopoulos, and V. A. Handerek, “High resolution fiber Bragg grating sensor demodulation using a diffraction grating spectrometer and CCD detection,” in IEE Colloquium on Optical Techniques for Smart Structure sand Structural Monitoring, Digest 1997_033 _Institute of Electrical Engineers, London, U.K., (1997).
[12] G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994)..
[13] B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000)
[14] W. C. Du, X. M. Tao, and H. Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature ,” IEEE Photon. Technol. Lett. 11, 105–107 (1999).
[15] S. Kim, J. Kwon, S. Kim, and B. Lee, “Temperature independent strain sensor using chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000)..
[16] Y. J. Chiang, Likarn Wang, and et al,”Temperature insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme,” Optics Communications, pp. 327-330(2001)..
[17] Y. J. Chiang, Likarn Wang, C. C. Yang, W. F. Liu, and et al, ”Multipoint Temperature-Independent Fiber-Bragg-Grating Strain-Sensing System Employing an Optical-Power-Detection Scheme,” Applied Optics. 41, 1661-1667 (2002).
[18] Y. M. Chang, C. C. Cheng, Y. L. Lo, “Thermal compensation for a chirp fiber Bragg grating bonded substrate,” Electronics Packaging Manufacturing, IEEE Transactions on [see also Components, Packaging and Manufacturing Technology, Part C: Manufacturing, IEEE Transactions on]. 27, 188 - 193 (2004).
[19] M. G. Xu, L. Reekie, Y. T. Chow and J. P. Dakin, “Optical In-fibre Grating High Pressure Sensor,” Electron. Lett. 29, 398-399 (1993).
[20] M. G. Xu, H. Geiger and J. P. Dakin, “Fiber grating pressure sensor with enhanced sebsitivity using a glass housing,” Electron. Lett. 32, 128-129 (1996).
[21] Yiinqi Liu, Zhumyan Guo, Yiiig Ztiang, Kin Seng Cliiang, and Xiaoyi Dong, “Simultaneous pressure and temperrature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36, 564-566 (2000).
[22] Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, and Beatrice C. B. Chu, “High-Sensitivity Pressure Sensor Using a Shielded Polymer-Coated Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 13, 618-619 (2001).
[23] H. J. Sheng, M. Y. FU, W. F. Liu, et al. “A lateral pressure sensor using a fiber Bragg grating,” Electron. Lett. 16,1146-1148 (2004).
[24] Yong Zhao, Yanbiao Liao, and Shurong Lai, “High Pressure and Temperature With a Bulk-Modulus and FBG Sensor,” IEEE Photon. Technol. Lett. 14,1584-1586 (2002).
[25] Ewa Chmielewska, Waclaw Urban´ czyk, and Wojtek J. Bock, “Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber,” Electron. Lett. 42,6284-6291 (2003).
[26] K. O. Hill, and et al., “Efficient mode-conversion in telecommunication fiber using externally written gratings, ” Electron. Lett.,Vol.26, 1270-1272 (1990).
[27] F. Bilodeau, and et al., “Efficient narrowband mode convertors fabricated in photosensitive fiber:Spectral response, ” Electron. Lett., Vol.27, 682-684 (1991).
[28] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides:application to reflection fiber fabrication, ” Apl. Phys. Lett., 32(10), 647 (1978).
[29] G. P. Agrawal, “Nonlinear Fiber Optics, ” Academic Press, San Diego, 451 (1995)..
[30]G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[31]K. O. Hill, and et al. “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Optics. 62, 1035–1037 (1993).
[32] D. Z. Anderson, and et al., “Production of in-fiber gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
[33] B. Malo, and et al, “Point-bypoint fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669 (1993).
[34] Andreas Othonos, Kyriacos Kalli, “Fiber Bragg Gratings,” Artech House, Inc., (1999).
[35] Alan D. Kersey, Michael A. Davis, Heather J. Patrick, and et al, “Fiber Grating Sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[36] 李鴻昌, 吳黎明, “材料力學,” 高立圖書公司., (1998).
[37] “Optical Spectrum Analyzer Operation Manual,” Anritsu corp., (1999).