研究生: |
杜凰祺 Huang-Chi Du |
---|---|
論文名稱: |
利用受質結構設計人類麩胺基硫轉移酶抑制劑來調控抗腫瘤藥物之細胞毒殺能力 Modulation of Antineoplastic Drug Cytotoxicity by Substrate-Based Design of Potent Human Glutathione S-Transferase (hGST) Inhibitors |
指導教授: |
劉行讓
Hsing-Jang Liu 李文山 Wen-Shan Li |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 麩胺基硫轉移酶 、榖胱甘肽 |
外文關鍵詞: | Glutathione S-transferase, Glutathione |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們以人類麩胺基硫轉移酶之受質(即榖甘胱肽)類似物為主要骨架,取甘氨酸、絲氨酸和麩氨酸為起始物依序進行耦合反應,進而加以修飾與改變,並且利用Cu(I)-catalyzed設計合成出一系列擁有1,2,3-triazole特質的化合物,最後利用HPLC的純化,可成功得到化合物13-17,總產率約12.8%∼16.5%。
在生物活性測試實驗中,這一系列的化合物對於hGST 的同功酶皆有相當良好的抑制效果;對於hGSTA2其IC50大約在14.3 μM∼164.0 μM左右,而針對hGSTM1則具有更佳的效果,其IC50大約只在1.5 μM∼34.0 μM左右。除此之外,化合物13-17在抑制酵素活性亦有相當不錯的選擇性;如抑制hGSTM1相對於hGSTA2約有3∼20倍的選擇性。其中又以化合物14的抑制效果最為顯著,於hGSTA2其IC50為15.1 μM,hGSTM1則有1.5 μM的效果。且在抑制機制探討的實驗中得知,化合物14抑制hGSTA2,其Ki值為6.4 μM,是屬於競爭型抑制劑,而對hGSTM1其Ki值則為0.6 μM,是為混合式型態抑制劑(即介於競爭型與非競爭型之間)。
另外我們針對人類乳癌細胞 (MDA-MB-231),進行癌細胞與臨床癌症藥物 (如:順鉑、沙奧特帕等)其抗藥性等相關實驗,證實在我們設計化合物14的存在下,可以幫助減少癌症藥物2∼3倍的用藥劑量,且達到相同之療效。確實使藥物發揮其最大功效,並可大大降低癌症藥物所帶來的副作用。
We choose the substrate, glutathione (γ-Glu-Cys-Gly, GSH), of human glutathione S-transferase (GST) as a building block to synthesize a series of GST substrate-based analogs where the Cys residue is substituted by serine. The overall synthesis was performed by utilizing both Cu(I)-catalyzed Huisgen 1,3-cycloaddition and peptide synthesis technique. Therefore, the final substrate-based analogs 13-17 were comprised of γ-Glu-Ser-Gly backbone, 1,2,3-trizole subunit, and hydrophobic moiety and subject to HPLC purification (total yields 12.8 ~ 16.5%) before biological testing.
In protein level, promising results were displayed in the inhibition of human GST isozyme assay using substrate-based analogs 13-17. In the study of hGSTA2, the IC50 values of 13-17 are found between 14.3 μM and 164.0 μM. In the case of hGSTM1, the IC50 range is observed between 1.5 μM and 34.0 μM indicating the 3- to 20-fold enhancement of inhibitory property of 13-17 toward specific isozyme. Analogue 14, compound with a meta-chlorobenzene moiety as a hydrophobic unit, was the most active one with IC50 values of 15.1 and 1.5 μM toward hGSTA2 and hGSTM1, respectively. From the Lineweaver-Burk plots showed that compound 14 exhibited a competitive inhibition (Ki = 6.4 μM) toward hGSTA2 and also displayed a pattern of mixed-type inhibition (Ki = 0.6 μM) toward hGSTM1 under the same condition.
In cellular study, the cytotoxic effect of antineoplastic agents, cisplatin and thiotepa, in the presence and absence of compound 14 was tested on human breast cancer cell, MDA-MB-231. Evidence of cytotoxicity enhancement (2- to 3-fold) of antineoplastic agents was observed in the presence of 14 suggesting that the hGSTs inhibitor plays an important role in regulating the efficacy of clinical anticancer drugs and reducing the side effect during the cancer therapy.
1. Fuertes, M. A.; Alonso, C.; Perez, J. M., Biochemical modulation of cisplatin mechanisms of action: Enhancement of antitumor activity and circumvention of drug resistance. Chemical Reviews 2003, 103, (3), 645-662.
2. Combes, B.; Stakelum, G. S., A Liver Enzyme That Conjugates Sulfobromophthalein Sodium with Glutathione. Journal of Clinical Investigation 1961, 40, (6), 981-&.
3. Booth, J.; Boyland, E.; Sims, P., An Enzyme from Rat Liver Catalysing Conjugations with Glutathione. Biochemical Journal 1961, 79, (3), 516-&.
4. Armstrong, R. N., Structure, catalytic mechanism, and evolution of the glutathione transferases. Chemical Research in Toxicology 1997, 10, (1), 2-18.
5. Lyon, R. P.; Atkins, W. M., Kinetic characterization of native and cysteine 112-modified glutathione S-transferase A1-1: Reassessment of nonsubstrate ligand binding. Biochemistry 2002, 41, (36), 10920-10927.
6. Burg, D.; Riepsaame, J.; Pont, C.; Mulder, G.; van de Water, B., Peptide-bond modified glutathione conjugate analogs modulate GST pi function in GSH-conjugation, drug sensitivity and JNK signaling. Biochemical Pharmacology 2006, 71, (3), 268-277.
7. Zheng, Y. J.; Ornstein, R. L., Role of active site tyrosine in glutathione S-transferase: Insights from a theoretical study on model systems. Journal of the American Chemical Society 1997, 119, (7), 1523-1528.
8. Yang, Y. W.; Jao, S. C.; Nanduri, S.; Starke, D. W.; Mieyal, J. J.; Qin, J., Reactivity of the human thioltransferase (Glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity. Biochemistry 1998, 37, (49), 17145-17156.
9. Davis, D. A.; Newcomb, F. M.; Starke, D. W.; Ott, D. E.; Mieyal, J. J.; Yarchoan, R., Thioltransferase (glutaredoxin) is detected-within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. Journal of Biological Chemistry 1997, 272, (41), 25935-25940.
10. Daunes, S.; D'Silva, C.; Kendrick, H.; Yardley, V.; Croft, S. L., QSAR study on the contribution of log P and E-s to the in vitro antiprotozoal activity of glutathione derivatives. Journal of Medicinal Chemistry 2001, 44, (18), 2976-2983.
11. Mahajan, S.; Atkins, W. M., The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cellular and Molecular Life Sciences 2005, 62, (11), 1221-1233.
12. Balendiran, G. K.; Dabur, R.; Fraser, D., The role of glutathione in cancer. Cell Biochem Funct 2004, 22, (6), 343-52.
13. Tamba, M.; Quintiliani, M., Kinetic-Studies of Reactions Involved in Hydrogen Transfer from Glutathione to Carbohydrate Radicals. Radiation Physics and Chemistry 1984, 23, (1-2), 259-263.
14. Rahman, I., Regulation of nuclear factor-kappa B, activator protein-1, and glutathione levels by tumor necrosis factor-alpha and dexamethasone in alveolar epithelial cells. Biochemical Pharmacology 2000, 60, (8), 1041-1049.
15. Eaton, D. L.; Bammler, T. K., Concise review of the glutathione S-transferases and their significance to toxicology. Toxicological Sciences 1999, 49, (2), 156-164.
16. Salinas, A. E.; Wong, M. G., Glutathione S-transferases - A review. Current Medicinal Chemistry 1999, 6, (4), 279-309.
17. Sheehan, D.; Meade, G.; Foley, V. M.; Dowd, C. A., Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal 2001, 360, 1-16.
18. Flatgaard, J. E.; Bauer, K. E.; Kauvar, L. M., Isozyme Specificity of Novel Glutathione-S-Transferase Inhibitors. Cancer Chemotherapy and Pharmacology 1993, 33, (1), 63-70.
19. Adang, A. E. P.; Brussee, J.; Vandergen, A.; Mulder, G. J., The Glutathione-Binding Site in Glutathione S-Transferases - Investigation of the Cysteinyl, Glycyl and Gamma-Glutamyl Domains. Biochemical Journal 1990, 269, (1), 47-54.
20. Lyttle, M. H.; Hocker, M. D.; Hui, H. C.; Caldwell, C. G.; Aaron, D. T.; Engqvistgoldstein, A.; Flatgaard, J. E.; Bauer, K. E., Isozyme-Specific Glutathione-S-Transferase Inhibitors - Design and Synthesis. Journal of Medicinal Chemistry 1994, 37, (1), 189-194.
21. Procopio, A.; Alcaro, S.; Cundari, S.; De Nino, A.; Ortuso, F.; Sacchetta, P.; Pennelli, A.; Sindona, G., Molecular modeling, synthesis, and preliminary biological evaluation of glutathione-S-transferase inhibitors as potential therapeutic agents. Journal of Medicinal Chemistry 2005, 48, (19), 6084-6089.
22. van der Peet, P.; Gannon, C. T.; Walker, I.; Dinev, Z.; Angelin, M.; Tam, S.; Ralton, J. E.; McConville, M. J.; Williams, S. J., Use of click chemistry to define the substrate specificity of Leishmaniabeta-1,2- mannosyltransferases. Chembiochem 2006, 7, (9), 1384-1391.
23. Jao, S. C.; Chen, J.; Yang, K.; Li, W. S., Design of potent inhibitors for Schistosoma japonica glutathione S-transferase. Bioorganic & Medicinal Chemistry 2006, 14, (2), 304-318.
24. McLaughlin, M.; Mohareb, R. M.; Rapoport, H., An efficient procedure for the preparation of 4-substituted 5-aminoimidazoles. Journal of Organic Chemistry 2003, 68, (1), 50-54
.
25. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angewandte Chemie-International Edition 2002, 41, (14), 2596.
26. Wiley, R. H.; Hussung, K. F.; Moffat, J., The Preparation of 1,2,3-Triazole. Journal of Organic Chemistry 1956, 21, (2), 190-192.
27. Delatorre, M.; Hao, X. Y.; Larsson, R.; Nygren, P.; Tsuruo, T.; Mannervik, B.; Bergh, J., Characterization of 4 Doxorubicin Adapted Human Breast-Cancer Cell-Lines with Respect to Chemotherapeutic Drug-Sensitivity, Drug-Resistance Associated Membrane-Proteins and Glutathione Transferases. Anticancer Research 1993, 13, (5A), 1425
28. Mandal, R.; Kalke, R.; Li, X. F., Interaction of oxaliplatin, cisplatin, and carboplatin with hemoglobin and the resulting release of a heme group. Chemical Research in Toxicology 2004, 17, (10), 1391-1397.
29. Baik, M. H.; Friesner, R. A.; Lippard, S. J., Theoretical study of cisplatin binding to purine bases: Why does cisplatin prefer guanine over adenine? Journal of the American Chemical Society 2003, 125, (46), 14082-14092.
30. Novak, I.; Potts, A. W., Electronic structure of thio-TEPA antitumor drug. Journal of Organic Chemistry 1999, 64, (11), 4201-4203.
31. Sosnovsky, G.; Rao, N. U. M.; Li, S. W., In the Search for New Anticancer Drugs .19. A Predictive Design of N,N-N',N'-N'',N'' -Tri-1,2-Ethanediylphosphoric Triamide (Tepa) Analogs. Journal of Medicinal Chemistry 1986, 29, (11), 2225-2230.
32. de Dios, A.; Prieto, L.; Martin, J. A.; Rubio, A.; Ezquerra, J.; Tebbe, M.; de Uralde, B. L.; Martin, J.; Sanchez, A.; LeTourneau, D. L.; McGee, J. E.; Boylan, C.; Parr, T. R.; Smith, M. C., 4-Substituted D-glutamic acid analogues: The first potent inhibitors of glutamate racemase (MurI) enzyme with antibacterial activity. Journal of Medicinal Chemistry 2002, 45, (20), 4559-4570.
33. Belshaw, P. J.; Mzengeza, S.; Lajoie, G. A., Chlorotrimethylsilane Mediated Formation of Omega-Allyl Esters of Aspartic and Glutamic Acids. Synthetic Communications 1990, 20, (20), 3157-3160.
34. Burg, D.; Mulder, G. J., Glutathione conjugates and their synthetic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metabolism Reviews 2002, 34, (4), 821-863.
35. Tully, D. C.; Liu, H.; Chatterjee, A. K.; Alper, P. B.; Williams, J. A.; Roberts, M. J.; Mutnick, D.; Woodmansee, D. H.; Hollenbeck, T.; Gordon, P.; Chang, J.; Tuntland, T.; Tumanut, C.; Li, J.; Harris, J. L.; Karanewsky, D. S., Arylaminoethyl carbamates as a novel series of potent and selective cathepsin S inhibitors. Bioorganic & Medicinal Chemistry Letters 2006, 16, (19), 5107-5111.
36. Lu, A. J.; Zhang, J.; Yin, X. J.; Luo, X. M.; Jiang, H. L., Farnesyltransferase pharmacophore model derived from diverse classes of inhibitors. Bioorganic & Medicinal Chemistry Letters 2007, 17, (1), 243-249.