簡易檢索 / 詳目顯示

研究生: 蔡錦盛
Jin-Sheng Tsai
論文名稱: 高分辨及能量過濾電鏡分析III-V族半導體量子井與奈米帶微結構之光學特性
The study of the structure and optical properties in quantum well and nanobelts of III-V semiconductor by using HR&EFTEM
指導教授: 開執中
Ji-Jung Kai
陳福榮
Fu-Rong Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 133
中文關鍵詞: 多層量子井電子能譜影像電子能量損失譜儀奈米帶空缺有序化
外文關鍵詞: multiple-quantum-wells(MQWs), photoluminescence (PL), electron spectroscopy imaging (ESI), band-gap map, nano-belts, vacancy ordering
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • III-V族半導體是當前很重要的發光材料,而且未來仍有很大的市場潛力。本篇論文是針對III-V族半導體的GaN/InGaN、GaN/AlN量子井及GaP奈米帶以能量過濾和電子顯微技術做探討。這裡針對三個主要研究課題來進行研究:(一)退火對GaN/InGaN多層量子井微結構與發光特性之研究;(二)電子能譜影像(Electron Spectroscopy Imaging
    :ESI)技術量測GaN/AlN量子井能隙分佈;(三)觀察GaP奈米帶vacancy ordering現像。
    大多數的GaN系發光元件,不管是藍光發光二極體的 (Light Emitting Diode, LED)或是藍光雷射二極體(Laser Diode, LD)大都是採用量子井結構為發光層。用量子井結構的好處是可發出純度較高的光譜(半高寬較窄)、注入電流值較小、光輸出功率較高、量子效應和光學增益也較高。元件的發光效率與量子井微結構有絕對的關係,因此研究的目地是分析GaN/InGaN量子井微結構與發光特性的關係,此外退火又會造成量子井微結構之改變而影響發光特性,並且提出一個模型來連結微結構與發光特性的關係。
    電子能量損失譜儀是一個很有用的分析工具,尤其是在分析材料的成分和鍵結上。半導體材料的低能電子損失能譜經過解捲可以解析出能帶能隙,同樣地,電子能譜影像(ESI)方法也可以做到相同的目的。ESI技術是能量過濾電鏡(energy-filter TEM)元素分佈的進一步應用,它是將一系列能損的能譜影像重組成電子損失能譜,但是受限於能量選擇狹縫(energy-selecting slit)重組後能譜,其能量空間點取樣不足,本研究以傅利業內插方法來解決取樣不足的問題,經過解捲亦可以解析出能隙。本方法的好處是可以作一區域的分析,而且較不會有輻射損傷的問題,缺點是能量分辨率較差。
    近年來奈米材料的研究受到科學界的重視,主要是它的物理和化學性質均和塊材不太相同,也許可以做出有用的元件。而缺陷對材料而言是一個很重要的因子會影響元件的特性,雖然GaP塊材本身是間接能隙,但是常和其他同族元素混和製成三元或四元的發光元件,也是一個很重要的發光材料。GaP奈米帶是奈米材料較特別的一種形貌,只要成分、溫度和氛圍控制正確,就很容易成長。分析GaP奈米帶的電子繞射圖樣和高分辨影像,發現GaP奈米帶中存在有空缺有序化(vacancy ordering)現像,這是個有趣且新的發現。
    本論文的研究主軸是建立在電子顯微鏡和電子能量過濾器的應用,研究對象為寬能隙的III-V族發光材料,研究的目的是要找出材料的微結構與其光學特性的關聯,更加瞭解材料的特性。


    Recently, the III-V group semiconductors play a very important material in light emitting. These materials have great market potentials in the future. In this thesis, we study the microstructure of GaN/InGaN multiple-quantum-wells (MQWs)、GaN/AlN quantum well and GaP nano-belts using energy filter and high resolution transmission electron microscopy. Three topics in this thesis are investigated: (I) Correlation of optical properties and interfacial microstructure of InxGa1-xN/GaN MQWs; (II) Band Gap Mapping for GaN/AlN quantum well by Electron Spectroscopy Imaging (ESI) method; (III) Observation of vacancy ordering structure in GaP nanobelt.
    Most devices, such as Light Emitting Diode or Laser Diode, were made using quantum well as active layer. The advantages of quantum well structure are high coherent, low inject current, high quantum effect and optical gain. The first topic is the study of the correlation of optical properties and interfacial microstructure in InxGa1-xN/GaN multiple-
    quantum-wells (MQWs). The photoluminescence (PL) characteristics of MQWs can be correlated to a function of interfacial structures including the average alloy composition, width of well, interfacial roughness, compositional variation and piezoelectric strain in the MQWs. The correlation in InxGa1-xN/GaN MQWs was studied by PL spectrometry, and high-resolution transmission electron microscopy with nanoscaled composition analyses. Good agreement is obtained between the simulated PL spectra using structure-correlated parameters and the experimental ones measured by optical methods. Our result shows that intensity of photoluminescence is decreased as a result of increasing quantum well roughness and width after annealing, while annealing has a negligible effect on the full width at half maximum value of the PL peak.
    The electron energy loss spectrum (EELS) is a very useful analyzing tool, especially analyzing the composition and bonding in materials. For second topic, several techniques were developed to demonstrate the possibility to map the distribution of band gap energies for GaN/AlN quantum well structures using electron spectroscopy imaging (ESI). The phase correlation function was used to register different energy loss images among ESI series with accuracy of one pixel. The energy dispersion of ESI series was improved by a FFT interpolation method. An iterative multi-variable least square algorithm was derived to refine the fitting of the single scattering distribution (SSD) to an analytic form of the density of states (DOS) function □(E)□ a(E-Eg)0.5. The inhomogeneity of the band energy of the quantum well can be revealed from the band energy map. A threshold filter method is applied to estimate the average value and standard deviation of the band-gap energy from barrier and well regions in the energy map. The average band-gap energy of AlN and GaN are determined to be 5.62 □ 0.35 eV and 3.87 □ 0.36 eV, respectively. The effect of delocalization on the accuracy of band energy determination is discussed. The 2□Eg accuracy of this analysis is comparable to half of the energy resolution of the ESI experiment.
    In recent years, the research of nano-size materials is attached importance. The properties of physics and chemical are different between bulk and nano-material. The defects play an important role for device. For third topic, III-V semiconductor GaP nano-belts were successfully synthesized with Fe2O3 catalyst on Si substrate by a simple evaporation process at high temperatures. The shape of these nano-belts is typically rectangular with width ranging from 50 to 500 nanometers and lengths can be up to several hundred micrometers. The thickness varies from 10 to 35 nm. A vacancies ordering structure were observed in GaP nano-belts. The ordering structure of vacancies were analyzed using high-resolution transmission electron microscopy, electron diffraction pattern and computer simulation. In [111] projection, the structure has a 120o super-structure, while in [211] projection it has super structure in and plane. This defected structure can be envisaged in terms of long period structure (LPS) with super-structure in (111) stacking plane.

    目錄 頁次 目錄……………………………………………………………………I 圖目錄…………………………………………………………………IV 表目錄……………………………………………………………VII 英文摘要…………………………………………………..i 中文摘要…………………………………………………………iv 第一章 前言……………………………………………………………1 1-1研究背景……………………………………………………………1 1-2研究動機與目的……………………………………………………3 第二章 文獻回顧………………………………………………6 2-1 氮化鎵藍光材料………………………………………………6 2-1-1 氮化鎵材料的發展………………………………………………6 2-1-2氮化鎵材料的性質……………………………………………8 2-1-3 氮化鎵系三元合金……………………………………………9 2-1-3.1氮化鋁鎵 (AlGaN)……………………………………………9 2-1-3.2氮化銦鎵 (InGaN)…………………………………………10 2-1-4 半導體發光二極體與雷射二極體……………………………11 2-1-4.1半導體雷射二極體工作原理………………………12 2-1-4.2異質結構半導體雷射二極體…………………………15 2-1-4.3量子井結構半導體雷射二極體………………………15 2-1-4.4量子井的特性…………………………………………16 2-2 能量過濾電鏡分析技術……………………………………17 2-2-1 概論………………………………………………………17 2-2-2電子能譜影像(electron spectroscopic image)技術…19 2-2-3 低能電子損失能譜在半導體材料特性之應用…………22 參考文獻……………………………………………………………….24 第三章 實驗方法與分析技術………………………………………37 3-1 電子束與樣品作用……………………………………………37 3-2 實驗儀器設備…………………………………………………39 3-2-1 場發射穿透式電子顯微鏡 (Field-Emission TEM)………39 3-2-2 X-光能量分散光譜儀…………………………………40 3-2-3 X-光能量分散光譜定量分析……………………………41 3-2-4能量過濾器與能量損失譜儀……………………………44 3-2-5 能量過濾影像之理論空間解析度………………………46 3-3、能譜影像分析技術………………………………………………47 3-3-1、相位相關法 (PCM)…………………………………………47 3-3-2 快速傅立葉轉換內插法………………………………………48 3-4 半導體材料光電特性之理論…………………………………50 3-5 量子井微結構與光學性質的理論背景…………………………52 參考文獻………………………………………………………………55 第四章 InGaN/GaN量子井微結構及光學特性研究…………64 4-1 量子井厚度之量測………………………………………………64 4-2 EDX濃度量測與延展效應………………………………………65 4-3 能量過濾器量測Indium濃度變化和界面平整度………………68 4-4 影響激發光波長的因素…………………………………………70 4-4-1 濃度對能隙的關係…………………………...…………………70 4-4-2量子井中的限制能量…………………………………………70 4-4-3激子的鍵結能量…………………………………………………71 4-4-4應變量子井對能隙的影響………………………………………72 4-4-5量子限制史塔克效應的影響……………………………73 4-5小結………………………………………………………………74 參考文獻……………………………………………………………….76 第五章 以ESI技術分析 AlN/GaN量子井的能隙分佈……88 5-1概論………………………………………………………………88 5-2 AlN/GaN量子井結構厚度和成分分析…………………………89 5-3 電子能量損失譜在能帶間隙訊息之研究………………………90 5-4 影像能譜訊號之擷取與探討……………………………………91 5-5 影像能譜訊號之校正……………………………………………92 5-6能帶間隙的空間分佈…………………………………………95 參考文獻……………………………………………………………….97 第六章 GaP奈米帶中空缺有序化現像之研究………………….…111 6-1概論………………………………………………………………111 6-2 GaP奈米帶的結構與繞射圖形之探討…………………………113 6-3 GaP奈米帶空缺有序化現像之探討……………………………115 6-4 小結………………………………………………………………118 參考文獻……………………………………………………………119 第七章 結論…………………………………………………………131 第八章未來研究方向…………………………………………………133 圖目錄 圖 2-1 使用橫向長法所做成的雷射二極體結構示意圖 … … 30 圖 2-2纖鋅結構示意圖……………………………………………….31 圖 2-3 閃鋅結構示意圖………………………………………………32 圖2-4 InN和 GaN的相圖………………………………………32 圖2-5本質半導體之能帶結構示意圖………………………………33 圖2-6簡併半導體之能帶結構示意圖………………………………33 圖2-7雙簡併半導體p-n junction之能帶結構示意圖……………..34 圖2-8單異質結構與能帶結構示意圖………………………………34 圖2-9 雙異質結構發光二極體雙示意圖…………………………..35 圖2-10 多層量子井與能帶結構示意圖……………………………35 圖 2-11影像能譜技術與能譜影像技術擷取訊息擷取方式示意圖…36 圖2-12 影像能譜(Image-Spectrum)資料擷取示意圖……………...36 圖3-1入射電子束與樣品作用時所引發之一連串反應……………56 圖3-2場發射式電子槍結構示意圖………………………………….57 圖3-3 各種形式電子槍之電子脫離材料表面示意圖……………..58 圖3-4 能量過濾器成像系統示意圖………………………………….60 圖3-5 三視窗法……………………………………………………...61 圖3-6 三視窗法求得元素分佈示意圖……………………………62 圖3-7 PCF 與CCF 之比較………………………………………...63 圖4-1 GaN/InGaN/GaN量子井結構的高分辨電子顯微影像….78 圖4-2 DTSA模擬結果和EDX量測的結果比較………….79 圖4-3 電子在樣品中的延展效應……………………………….80 圖4-4 電子能量損失能譜…………………………………….81 圖4-5 銦元素之電子元素分佈圖………………………………82 圖4-6 銦元素元素分佈和濃度變化二維投影影像…………………84 圖4-7 壓應力和張應力量子井與其能帶結構示意圖……………….85 圖4-8 PL光譜與實驗模擬結果比較………………………………..86 圖4-9量子井結構與能隙示意圖………………………………….87 圖5-1 序列能譜影像實驗流程圖…………………………………98 圖5-2 GaN/AlN多層膜電子顯微影像與EDX分析……………99 圖 5-3 比較AlN與GaN層之電子能量損失能譜…………………..100 圖 5-4 以打點方式所擷取之EELS低能能譜分析……………….101 圖 5-5 AlN和GaN 之EELS低能損失能譜及Fourier-log分析所得之 單次散射結果………………………………………………..102 圖 5-6 AlN/GaN量子井的序列ESI能譜影像……………………….103 圖 5-7 ESI方法和probe方法之EELS比較………………………..105 圖5-8 比較經過鏡射法(mirror-flip method)與沒使用之快速傅立葉轉 換內插結果……….…………………………………………106 圖 5-9內插結果與未內插曲線之比…………………………….107 圖 5-10 SSD曲線與JDOS擬合結果………………………………108 圖5-11 量子井區域能帶能隙之三維分佈圖……………………......109 圖5-12 能帶密度示意圖……………………………………………110 圖 6-1 SEM顯微影像、XRD繞射與EDX成分鑑……………..121 圖 6-2 單根GaP奈米帶的形貌經由電子顯微鏡的.…………122 圖 6-3是奈米帶不同軸向的繞射圖…………………………….123 圖 6-4 則是雙方位雙晶的結構示意圖……………………….....124 圖 6-5 表面階梯的結構示意圖…………….…………………….124 圖 6-6 愛德華球(The Ewald sphere)與倒晶格空間切面示意圖….125 圖 6-7 正常的GaP奈米帶繞射圖………………………………125 圖 6-8 是GaP奈米帶沿著[111]方向的高分辨電子影像………126 圖6-9 正常GaP閃鋅結構之單位晶胞模型………………………127 圖 6-10 空缺有序化的三維單位晶胞……...……………………128 圖6-11 沿最密堆積的(111)面,空缺平面呈現出長週期結構(long period structure,LPS)………………………………………..129 圖 6-12 比較表面階梯模型(surface step model)和空缺有序模型 (vacancy ordering)對厚度變化之原子排列影像………………130 表目錄 表 2-1 纖鋅結構與閃鋅結構氮化鎵之彈性模數……………..……31 表3-1 各式電子槍之性能比較表………………………………….59 表4-1是實驗的參數和估算的理論空間解析度…………….…..83 表4-2 量測與計算之試片參數…………………………………86 表5-1理論空間解析度與實驗參數……………………………104

    [2.1] W. C. Johnson, J. B. Parsons, and M. C. Crew, J. Phys. Chem. 36, 251 (1932).
    [2.2] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 367 (1969)
    [2.3] J. I. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheister, RCA Review 32, 383 (1971).
    [2.4] I. Akasaki, K. Hiramatsu and H. Amano, Memoir of Faculty of Engineering, Nagoya University 43, 147 (1991).
    [2.5] H. P. maruska, D. A. Stevenson and J. J. Pankove, Appl. Phys. Lett. 22, 306 (1973).
    [2.6] J. I. pankove and J. A. Hutchby, J. Appl. Phys. 47, 5387 (1976).
    [2.7] S. Yoshida, S. Misawa and S. Gonnda, J. Vac. Sci. Technol. B 1, 250 (1983).
    [2.8] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
    [2.9] S. Nakamura, Y. Harada and M. Seno, Appl. Phys. Lett. 58, 2021(1991).
    [2.10] H. Amano, M. Kitoh, K. Hiramatsu, N. Sawaki and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).
    [2.11] S. Nakmura, T. Mukai, M. Senoh and N. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).
    [2.12] S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys. Lett. 67, 1868 (1995).
    [2.13] S. Nakamura, et. al, J. Appl. Phys. 35, 74 (1996).
    [2.14] S. Nakamure, MRS. Bull, 22 (2), 29 (1997).
    [2.15] H. P. Maruska, J. J. Tietjen. Appl. Phys. Lett. 15, 327 (1969).
    [2.16] T. Detchprohm, K.Hiramatsu, K. Itoh, I.Akasaki. Jpn. J. Appl. Phys. 25, 1924 (1986).
    [2.17] M. Mizuta, S. Fujieda, Y. Matsumoto and T. Kawamura, Jpn. J. Appl. Phys. 25, L945 (1986).
    [2.18] M. J. Paisley, Z. Sitar, J. B. Posthill and R. F. Favis, J. Vac. Sci. Technol. A 7, 701 (1989).
    [2.19] R. C. Powell, N. E. Lee, Y. W. Kim and J. E. Greene, J. Appl. Phys. 73, 189 (1993).
    [2.20] V. A. Savastenko, A. U. Sheleg, Phys. Status Solidi A, 48, 135-9 (1978).
    [2.21] T. Detchprohm, K. Hiramatsu, K. Itoh and I. Akasaki, Jpn. J. Appl. Phys. 31, L1454 (1992).
    [2.22] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
    [2.23]A. U. Sheleg, V. A. Savastenko, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk (USSR) p.126-8 (1977).
    [2.24] Thermochemical Propertis of Inorganic Substances (Springer, Berlin-Heidelberg-New York, USA, 1977)
    [2.25] G. A. Slack, J. Phys. Chem. Solids 34, 330 (1977).
    [2.26] J. Karpinski, S. Porowski. J. Cryst. Growth (Netherlands) 66, 11 (1984).
    [2.27] J. Karpinski, J. Jun, S. Porowski. J. Cryst. Growth, 66, 1 (1984).
    [2.28] E. Lashmi, B. Mathur, A. B. Bhattacharya and V. P. Bhargava, Thin Solid Films, 74, 77 (1980).
    [2.29] B-C. Chung and M. Hershenzon, J. Appl. Phys. 72, 651 (1992).
    [2.30] T. Lei, T. D. Moustakas, J. Appl. Phys. 71, 4933 (1992).
    [2.31] H. J. Hovel, J. J. Cuomo, Appl. Phys. Lett. 20, 71 (1972).
    [2.32]B. B. Kosicki, R. J. Powell, J. C. Burgiel, Phys. Rev. Lett. 24 , 1421 (1970).
    [2.33]S. Bloom, G. Harbeke, E. Meier, I. B. Ortenburger, Phys. Status Solidi B, 66, 161 (1974).
    [2.34] M. Lyutaya and T. Bartnitskaya. Inorg. Mater. 9, 1052 (1973).
    [2.35] J. Hagan, R. Metcalfe, D. Wickenden, and W. Clark. J. Phys. C, 11, L143 (1978).
    [2.36] B. Baranov, L. Daweritz, V. Gutan, G. Jungk, H. Neumann, and H. Raidt. Phys. Statu. Solidii(a) 49, 629 (1978).
    [2.37]S. Yoshida, S. Misawa, and S. Gonda. J. Appl. Phys. 53, 6844 (1982).
    [2.38]Y. Koide, H. Itoh, M. R. H. Khan, K. Hiramatsu, N. Sawaki, and I. Akasaki. J. Appl. Phys. 61, 4540 (1987).
    [2.39]S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).
    [2.40]T. Matsuoka, H. Tanaka, T, Sasaki, and A. Katsui, Inst. Phys. Conf. Ser. 106, 141 (1989).
    [2.41]M. Panish and H. Temkin, Gas Source Molecular Beam Epitaxy, Springer series in Material Science, vol.26 Springer-Verlag, Berlin (1993).
    [2.42]S. Keller, B. Keller, D. Japolnek, A. Abare, H. Masui, L. Coldren, U. Mishra, and S. DenBaars, Appl. Phys. Lett. 68, 3147 (1996).
    [2.43] I. Ho and G. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
    [2.44]K. Osamua, S. Naka, and Y. Murakmi, J. Appl. Phys. 46, 3432 (1975).
    [2.45]T. Nagamoto, T. Kuboyama, H. Minamino, and O. Omoto, Jpn. J. Appl. Phys. 28, L1334 (1989).
    [2.46] T. Mastsuoka, N. Yashimoto, T. Sasaki and A. Katsui, J. Electron. Mater. 21, 157 (1992).
    [2.47] N. Yoshimoto, T. Mastsuoka, T. Sasaki and A. Katsui, Appl. Phys. Lett. 59, 2251 (1991).
    [2.48]S. Nakamura and T. Mukai, Jpn. J. Appl. Phys. 31, L1457 (1992).
    [2.49] L. Esakiy and R. Tsu, IBM J. Res. Develop 14, 61 (1970).
    [2.50] J. P. Van der Ziel, et al. Appl. Phys. Lett. 26, 463 (1975).
    [2.51] R. Castaing, L. Henry, Comptes Rendus B255, 76 (1962).
    [2.52] G. Zanchi, P. J. Perez, J. Sevely, Microscopie Electronique a Haute Tension (Proc. 4 th Int. Conf. for HVEM, 1975, Toulouse), p.55
    [2.53]S. Taya, Y. Taniguchi, E. Nakazawa, J. Usukur, J. Electron Microsc. 45,307 (1996).
    [2.54] L. Reimer, Energy-filtering transmission electron microscopy (Springer-Verlag, New York) (1995).
    [2.55] R.F. Egerton, Electron-energy loss spectroscopy in the electron microscope (Plenum Press, New York) (1996).
    [2.56] F. Hofer, W. Grogger, P. Warbichler, and I. Papst, Mikrochim. Acta 132, 273 (2000).
    [2.57] C. Jeanguillaume and C. Colliex, Ultramicroscopy 28, 252 (1989).
    [2.58] J.A. Hunt and D.B. Williams, Ultramicroscopy 38, 47 (1991).
    [2.59] G. Botton and G. L’Esperance, J. Microsc. 173, 9 (1994).
    [2.60] N. Bonnet, J. Microsc. 190, 2 (1998).
    [2.61] C. Jeanguillaume, P. Trebbia, and C. Colliex, Ultramicroscopy 3, 23 (1978).
    [2.62]O.L. Krivanek, A.J. Gubbens, M.K. Kundmann, and G.C. Carpenter, 51st Ann. Proc. Electron Microsc. Soc. Am. (San Francisco Press, San Francisco) (1993) p.586
    [2.63] H. Shuman, C.F. Chang and A.P. Somlyo, Ultramicorscopy. 19, 121 (1986).
    [2.64] Crozier P A, Ultramicorscopy. 58, 157 (1995).
    [2.65] J. Bentkey, E. L. Hall and E. A. Kenik, Proc. Microscopy and Microanalysis. (1995) p.268
    [2.66] F. Hofer, W. Grogger, G. Kothleitnrt and P. Warbichler, Ultramicroscopy 67, 83 (1997).
    [2.67] J. Mayer, U. Eigenthaler, J.M. Plitzko and F. Dettenwanger, Micron 5, 361 (1997).
    [2.68]N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) (1988) p.351
    [2.69]A. Berger, J. Mayer and H. Kohl, Ultramicroscopy 55, 101 (1994).
    [2.70] F. Hofer and P. Warbichler, Ultramucroscopy 63, 21 (1996).
    [2.71] P.A. Crozier and R.F. Egerton, Ultramicroscopy 27, 9 (1988).
    [2.72] D.B. Williams and C.B. Carter, Transmission Electron Microscopy (Plenum Press. New York & London) (1996).
    [2.73] T. Malis, S. Cheng and R.F. Egerton, J. Electron. Microsc. Tech. 8, 8471 (1988).
    [2.74] F. Hofer, W. Grogger and P. Warbichler, Ultramircoscop 59, 15 (1995).
    [2.75] W. Jager and J. Mayer, Ultramicroscopy, 38, 47 (1995).
    [2.76]M. Schenner, M. Nelhiebel and P. Schattschneider, Ultramicroscopy. 65, 95 (1996).
    [2.77] J. L. Lavergne, J. M. Martin and M. Belin, Microsc. Microanal. Microstruct. 3,517 (1992).
    [2.78] H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorscopy. 19, 121 (1986).
    [2.79] J. Mayer, U. Eigenthaler, J.M. Plitzko and F. Dettenwanger, Micron 5,361 (1997).
    [2.80] L. Ponsonnet, B. Vacher and J.M. Martin, Thin Solid Films 324, 170 (1998).
    [2.81] J. M. Plitzko and J. Mayer, Ultramicroscopy, 78, 207 (1999).
    [2.82] P. J. Thomas and P. A. Midgley, Ultramicroscopy, 88, 179 (2001).
    [2.83]P. J. Thomas and P. A. Midgley, Ultramicroscopy, 88, 187 (2001).
    [2.84]C. Quintana, J. P. Lechaire, N. Bonnet, C. Risco and J. L. Carrascosa, Microscopy Research and Technique 53, 147 (2001).
    [2.85] S. C. Lo, J. J. Kai, F. R. Chen, L. C. Chen, L. Chang, C. C. Chang, P. J. Ding, B. Chin, H. Zhang and F. S. Chen, J. Electron Microsc. 50, 497 (2001).
    [2.86] J. Y. Yang, F. R. Chen and J. J. Kai, J. Electron Microsc. 51, 391 (2002).
    [2.87] P. E. Batson, K. L. Kavanagh, J. M. Woodall, and J. W. Mayer, Phys. Rev. Lett. 57, 2729 (1986).
    [2.88] B. Rafferty, and L. M. Brown, Phys. Rev. B, 58, 10326 (1998).
    [2.89]U. Bangert, A. J. Harvey, and R. Keyse, Ultramicroscopy 68, 173 (1997).
    [2.90] Bruley J and Brown L M (1987) Analytical Electron Microscopy Workshop, Proceedings, edited by G. W. Lorimer (The Institute of Metals, London, 1988)

    [3.1] D. B. Williams and C. B. Cater, in Transmission Electron Microscopy, (Plenum, New York, 1996), Ch. 33- 35
    [3.2] R. Castaing (1951) Thesis, University of Paris, ONERA Publication, #55.
    [3.3] G. Cliff and G. W.Lorimer, J. Microsc. 103, 203 (1975)
    [3.4] D. B. Williams and C. B. Cater, in Transmission Electron Microscopy, (Plenum, New York, 1996), Ch. 37- 40
    [3.5] C. Deininger, R. F. Egerton, F. Hofer, B. Jouffrey, D. Krahl, R. D. Leapman, J. Mayer, L. Reimer, H. Rose, P. Schattschneider, and J. C. H. Spence, in Energy-Filter Transmission Electron Microscopy, edited by L. Reimer (Springer, New York, 1955) p.347-393
    [3.6] O. L. Krivanek, M. K. Kundmann and K. Kimoto, J. Microsc. 180, 277 (1995)
    [3.7] Gonzalez Rafael G. and Woods R E, Digital Image Processing, (ddison-Wesley Publishing Company, 1992) p109
    [3.8] Kuglin C D, Hines D C, Proceedings of the IEEE International Conference on Cybernetics and Society (1975), p. 163.
    [3.9] D. Fraser, IEEE Trans. Acoust., Speech, Singnal Processing 37(5) (1989) p.665
    [3.10] R.W. Schafer and L.R. Rabiner, Proc. IEEE 61 (1973) p.691
    [3.11] J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, Micron 5 (1997) p.361
    [3.12] J. Bruley and L.M. Brown, Analytical Electron Microscopy Workshop, 1987 Proceedings, edited by G.W. Lorimer (The Institute of Metals. London, 1988)
    [3.13 ]K. C. Zeng et. al. Appl. Phys. Lett. 73, 1724 (1998)

    [4.1] P. Bayle-Guillemaud, A K Petford-Long, T C Anthony and J A Brug, IEEE Trans. Magn. 32, 4627 (1996)
    [4.2] DTSA: Desk Top Spectrum Analyzer and X-Ray Data Base, software developed by National Institute of Standards and Technology.
    [4.3] S. J. B Reed, Ultramicroscopy 7, 405 (1982)
    [4.4] David B. Williams and C. Barry Carter, Transmission Electron Microscopy, chapter 39 (1996 Plenum Press, New York)
    [4.5] J. Phys: condens. Matter 14, 11097 (2002)
    [4.6] S. Nakamura, J. Vac. Sci. Technol. A 13, 705 (1995)
    [4.7] A. Dmitriev and A. Oruzheinikov, Internat. Symp. on Blue Laser and Light Emitting Diodes (1996) p.360
    [4.8] Quantum Physics, ed. Robert Eisberg and Robert Resnick
    [4.9] Properties of Group III Nitrides, ed. J. H. Edgar, INSPEC, IEE, London, UK(1994)
    [4.10] B.K. Meyer, D. Volm, A.Graber, H. C. Alt, T. Detchprohm, A. Amano and Akasaki, Solid State Comm. 95, 597 (1995)
    [4.11]Group III Nitride Semiconductor Compounds Physics and Applications, ed. Bernard Gil, Clarendon Press, Oxford (1998) p52.
    [4.12] B. Zhao and A. Yariv, in: Eli Kapon (Ed), Semiconductor laser I, (Academic press, 1999), p. 36.
    [4.13]I. Vurgaftman, J.R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)
    [4.14]Tetsuya Takeuchi et. al. Appl. Phys. Lett. 73, 1691 (1998)
    [4.15]Optical Semiconductor Devices, ed. Mitsuo Fukuda, John Wiley & Sons, INC (1999) New York
    [4.16] B. Monermar and G. Pozina, Progress in Quantum Electronic 24 , 239 (2000)
    [4.17]Physics of Optoelectronic Devices, ed S. L. Chuang, chapter 3.5, John Wiley & Sons, INC (1995) New York
    [4.18] M. E. Aumer, S. F. LeBoeuf, B. F. Moody, and S. M. Bedair, Appl. Phys. Lett. 79, 3803 (2001)
    [5.1] M. Khan, J. Kuznia, D. Olson, T. George and W. Pike, Appl. Phys. Lett. 63, 3470 (1993)
    [5.2] R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscopy. (Plenum Press, New York, 1996) pp.151-154
    [5.3] I. Alexandrou, A.J. Papworth, B. Rafferty, G.A.J. Amaratunga, C.J. Kiely and L.M. Brown, Ultramicroscopy, 90, 39 (2001)
    [5.4] P. E. Batson, K. L. Kavanagh, J. M. Woodall and J. W. Mayer, Phys. Rev. Lett. 24, 2729 (1986)
    [5.5] C. G. Olson and D. W. Lynch, Phys. Rev. B 24, 4629 (1981)
    [5.6] J. Hedman and N. Martensson, Phys. Scripta 22, 176 (1980)
    [5.7] G. Brockt and H. Lakner, Micron 31, 435 (2000).
    [5.8] O. L. Krivanek, M. K. Kundmann and K. Kimoto, J. Microsc. 180, 277 (1995)
    [5.9] R. F. Egerton and P. A. Crozier, Micron 28, 117-124(1997)
    [5.10] M. Schenner, M. Nelhiebel and P. Schattschneider, Ultramicroscopy 65, 95-99 (1996).
    [5.11] 電子衍射物理教程,王蓉,冶金工業出版社(2002)北京
    [5.12] P.C.Tiemeijer et al., Microsc.Microanal. 7, 1130(2001)
    [5.13] Mitsuo Fukuda, Optical Semiconductor Devices. (John Wiley & Sonc, INC. New York, 1999) p.85

    [6.1] A. Thess, et. al. Science 483,271 (1999).
    [6.2] W. Han, S. Fan, Q. Li and Y. Hu, Science 277, 1287 (1997).
    [6.3]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science 270, 1791 (1995).
    [6.4] C. R. Martin, Science 266, 1961 (1994).
    [6.5] Li D X, Ping D H, Ye H Q, et al, Phils. Mag. Lett. 2, 53 (1993)
    [6.6] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.
    (wiley, New York, 1981) Chap. 12.3.
    [6.7] M. R. Lorenz, G. D. Pettit, and R. C. Taylor, Phys. Rev. 171, 876 (1968)
    [6.8] R. G. Humphreys, U. Roぴssler, and M. Cardona, Phys. Rev. B 18, 5590 (1978)
    [6.9] H. W. Seo, et. al. Appl. Phys. Lett. 82, 3752 (2003)
    [6.10] Handbook Series on Semiconductor Parameters, edited by M. Levinshtein, S. Rumyantsev, and M. Shur, (World Scientific, Singapore, 1996), Vols. 1 and 2.
    [6.11] C. Yeh, Z. W. Lu, S. Froyen and A. Zunger, Physic Review, Serie 3, PRBMD 46, ISSUE 16, P. 10086 (1992)
    [6.12] T. L. Lee, L. J. Chen, and F. R. Chen, J. Appl. Phys. 71, 3307 (1992)
    [6.13] R. Sato and H. Doi, Acta Crystallogr. 14, 763 (1961)
    [6.14] Billingham, P. S. Bell, and M. H. Lewis, Philos. Mag. 25, 661 (1971)
    [6.15] R. H. J. Hannink, M. J. Murray, and M. E. Packer, Philos. Mag. 24, 1179 (1971)
    [6.16] D. Cherns, Philos. Mag. 30, 549 (1974)
    [6.17] D. B. Holt, J. materials science 19, 439 (1984)
    [6.18]J. M. Cowley and A. F. Moodie, J. Phys. Soc. Japan 17 (B II), 86 (1962)
    [6.19] J. M. Cowley and A. F. Moodie, Acta Crystallogr. 10, 609 (1957)
    [6.20] X. Duan and C. M. Lieber, Adv. Mater. 12, 298 (2000).
    [6.21] T. L. Lee, L. J. Chen and F. R. Chen, J. Appl. Phys. 71, 3307 (1992).
    [6.22] M. H. Lewis and J. Billingham, Philos. Mag. 29, 241 ( 1974).
    [6.23]R. H. J. Hannink, M. J. Murray and M. E. Packer, Phil. Mag. 24, 1179 (1971).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE