研究生: |
林重佑 Chung-Yu Lin |
---|---|
論文名稱: |
在偏序度量空間中的循環弱收縮固定點定理 Fixed point of cyclic weak contractions in partial metric spaces |
指導教授: |
陳啟銘
Chi-Ming Chen 李俊璋 Chiun-Chang Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 17 |
中文關鍵詞: | 固定點 、循環弱收縮 、偏序度量空間 |
外文關鍵詞: | Fixed point, Cyclic weak contraction, Partial metric spaces |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是探討在完備的偏序度量空間中,一個建立在 φ,ϕ,ξ:R^+→R^+ 和 ψ:R^(+^4 )→R^+ 四個函數上的循環弱收縮函數之固定點定理。
The purpose of this paper is to study a fixed point theorem for a mapping satisfying the cyclical generalized contractive conditions based on four functions φ,ϕ,ξ:R^+→R^+ and ψ:R^(+^4 )→R^+ in complete partial metric spaces.Our results generalize and improve many recent fixed point theorems in the literature.
[1] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory and Appl., (2012), 2012.40.
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integerales, Fund. Math., 3(1922), 133-181.
[3] C. Di Bari, T. Suzuki, C. Vetro, Best proximity for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008), 3790-3794.
[4] P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in
metric spaces, Fixed Point Theory and Appl., (2008), Article ID 406368.
[5] M. Eslamian, A. Abkar, A fixed point theorem for generalized weakly contractive mappings in complete metric space, Ital. J. Pure Appl. Math., (In press).
[6] S. Jankovic, Z. Kadelburg, S. Radonevic, B. E. Rhoades, Best proximity point Theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl., 2009 (2009), Article ID 197308, 9 pages.
[7] S. Karpagam, S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., 74(2010), 1040-1046.
[8] E. Karapinar, I.M. Erhan, Best proximity point on different type contraction, Appl. Math. Inf. Sci., 5 (2011), 342-353.
[9] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239-244.
[10] E. Karapinar, I.M. Erhan, Cyclic contractions and fixed point theorems, Filomat, 26 (2012), 777-7-82.
[11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, Vol.4 NO.1 (2003), 79-89.
[12] S.G. Mattews, Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci., 728 (1994) 183-197.
[13] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istid Math. Univ. Trieste, 36 (2004) 17-26.