簡易檢索 / 詳目顯示

研究生: 陳柏宇
Chen, Po Yi
論文名稱: 金奈米粒子超晶格薄膜螢光性質研究
Fluorescent properties of gold nanoparticle supercrystal films
指導教授: 果尚志
Gow, Shang Jr
口試委員: 何榮銘
Ho, Rong Ming
嚴大任
Yen, Ta Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 表面電漿子金屬螢光金顆粒薄膜
外文關鍵詞: fluorescent, gold nanoparticle film, plasmon
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從過去單一金屬結構的研究中發現,貴金屬在小尺寸的情況下受激發的電子會有很高的機率耦合進表面電漿子共振模態之中,此一現象使得金屬螢光的波形可以藉由調控貴金屬的結構以及兩兩偶合關係來改變。

    這次的實驗中利用大面積結構量測消散光光譜作為表面電漿共振訊號的依據,與螢光光譜行為進行對照,觀察此一螢光機制在大範圍偶合的結構是否適用,實驗中主要量測三種不同的薄膜利用化學方法所製做的最密堆積金顆粒膜,改變金顆粒的大小以及層數與使用熱蒸鍍的方式製作出來的金顆粒膜作為對照組進行比較。

    從實驗中可以發現最密堆積的金顆粒薄膜結構中消散光譜與螢光光譜波形有很好的對應關係,因此可以利用改變金屬結構的消散光達到大面積可見光全波段的螢光,甚至可以利用多層結構的縱向耦合達到更長波長的應用。


    In this work, we performed the photoluminescence and plasmon resonance of nanoparticle films. Using the extinction spectra as the basis of signals of plasmon resonance, and we compare the extinction and PL spectra. In the experiment we measure on three kind of nanoparticle films, close-pack gold nanoparticle films change the size and numbers of layer and deposited by using E-beam evaporator. We systematically observed simultaneous red shift in PL and extinction spectra with increasing particle size and confirm that L-mode resonance also contributed to the PL of the multilayer close-pack gold nanoparticle films. For Au nanoparticle film deposited by using E-beam evaporator, we observed blue shift of the photoluminescence peak (relative to the scattering peak).

    第一章 序論………………………………………………………………………………………………………..1 第二章 實驗原理與文獻回顧…………………………………………………………………………….. 4 2-1. 電漿模組近似之介電函數 (Drude Model)…………………………………..………….4 2-2. 表面電漿子傳輸 (Surface Plasmon Parliton)……………………………….…..………8 2-3. 局域的表面電漿子震盪 (Localized Surface Plasmon)……………………..…….13 2-4.等效介電函數模型 (Maxwell-Garnett model)………………………………….……..19 2-5. 表面電漿子共振螢光……………………………………………………………..……..……...23 第三章 樣品備置與儀器架設…………………………………………………………..……………….26 3-1. 樣品備製……………………………………………………………………………..…………………26 3-1-1. 最密堆積金屬顆粒模……………………………………………….………….………….26 3-1-2. 熱電子束蒸鍍機金屬薄膜成長…………………………………………….………..29 3-2. 實驗儀器架設………………………………………………………………………………..………32 3-2-1. 消散光譜量測光路架設…………………………………………………….….……..…….33 3-2-2. 螢光光譜量測光路架設………………………………………..………..……….…………35 第四章 實驗內容與結果分析…………………………………………………………………..…..………36 4-1. 不同金顆粒大小單層最密堆積金屬顆粒模量測與分析……………….…..…36 4-2. 改變層數多層最密堆積金屬顆粒模量測與分析………………….……………….49 4-3. 熱電子蒸鍍成長薄膜量測與分析………………………………………………….………64 第五章 結論…………………………………………………………………………………………………….…70 參考文獻…………………………………………………………………………………………………..………..71

    [1] D.A.Schultz, Current Opinion in biotechnology, 14, 13 (2003).
    [2] Harry A. Atwater , Albert Polman Nature Materials 9, 205–213 (2010).
    [3] Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
    [4] Yu-Jung Lu, Ming-Yen Lu, Yu-Chen Yang, Hung-Ying chen, and Shangjr Gwo , ACS Nano, 7, 7640–7647 (2013).
    [5] E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, PHYSICAL REVIEW B, 70, 205424 (2004).
    [6] J. Zheng, J. T. Petty, and R. M. Dickson, J. Am. Chem, 125, 7780 (2003).
    [7] M. B. Mohamed et al., Chem. Phys. Lett. 317, 517 (2000).
    [8] Hailong Hu, Huigao Duan, Joel K. W. Yang and Ze Xiang Shen, ACS NANO , 6 , 10147–10155 (2012).
    [9] Meng-Hsien Lin,Hung-Ying Chen,and Shangjr Gwo : J. AM. CHEM. 132, 11259–11263(2010).
    [10] Drude, Paul. Zur Elektronentheorie der Metalle. Ann. Phys., 1, 566–613 (1900).
    [11] Johnson, P. B. and Christy, R. W. Phys. Rev. B, 6(12) , 4370–4379. (1972).
    [12] Hovel, H.; Fritz, S.; Hilger, A.; Kreibig, U.; Vollmer, M. Phys. Rev .B, 48, 18178 - 18188. (1993).
    [13] Jackson, John D. Classical Electrodynamics. John Wiley & Sons, Inc., New York, NY, 3rd edition(1999).
    [14] A. V. Zayats, I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
    [15] Hutter, E. ; Fendler, J.H.Adv.Mater., 16, 1685, (2004).
    [16] E. KRETSCHMANN an d H . RAETHER : Z. Physik 208, 77 (1968).
    [17] Thearith Ung , Luis M. Liz-Marzan , Paul Mulvaney ,Eng. Aspects 202 119–126 (2002).
    [18] Ohad Levy and David Stroud, PHYSICAL REVIEW B, 56, 13 (1997).
    [19] Electronic Materials, Prof. Dr. Helmut Föll.
    [20] Zhenping Guan, Nengyue Gao, Xiao-Fang Jiang, Peiyan Yuan, Fei Han, and Qing-Hua Xu, J. Am. Chem. Soc. 2013, 135, 7272 – 7277.
    [21] E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, Physical Review B 70, 205424 (2004).
    [22] Mustafa Yorulmaz, Saumyakanti Khatua, Peter Zijlstra, Alexander Gaiduk, and Michel Orrit, Nano Lett., 12, 4385 − 4391 (2012).
    [23] Chi-Fan Chen, Shien-Der Tzeng, Hung-Ying Chen, Kuan-Jiuh Lin, and Shangjr Gwo, J. AM. CHEM. SOC.,130, 824 – 826 (2008).
    [24] Alexei Tcherniak, Stephan Link, J. Phys. Chem. C, 115, 15938 – 15949 (2011)
    [25] E. KRETSCHMANN an d H . RAETHER : Z. Physik 208, 77 (1968).
    [26] N.K. Grady, N.J. Halas, P. Nordlander, Chemical Physics Letters, 399, 167-171 (2004).
    [27] A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271-5283 (1998).
    [28] P. Nordlander, C. Oubre, E. Prodan, K. Li and M. I. Stockman, Nano Lett., 4, 899-903, (2004).
    [29] Shu-Chun Yang, Hiromu Kobori, Chieh-LunHe, Meng-Hsien Lin, Hung-Ying Chen, Cuncheng Li, Masayuki Kanehara, Toshiharu Teranishi, and Shangjr Gwo, Nano Lett., 10, 632-637,(2010).
    [30] Y K Mishra 1, S Mohapatra , D Kabiraj , A Tripathi , J C Pivin and D K Avasthi :, J. Opt. A: Pure Appl.9, 410–414 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE