簡易檢索 / 詳目顯示

研究生: 王茂家
Wang, Mao-Chia
論文名稱: 超薄吸收層太陽能電池及利用摻雜改變混合太陽能電池的轉換效率
The extremely-thin absorber layer solar cell and use the dopant to change the conversion efficiency of hybrid solar cell.
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
Meng, Hsin-Fei
冉曉雯
Zan, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 76
中文關鍵詞: 超薄吸收層太陽能電池F4TCNQ摻雜凝膠狀IGZO刮刀塗佈浸泡塗佈旋轉塗佈
外文關鍵詞: Extremely-thin absorber layer solar cell, F4TCNQ doping, Sol-gel IGZO, Blade-coating, Dip-coating, Spin-coating
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機太陽能電池因為具有質量輕盈易於攜帶、製作過程簡易且附有元件可撓性之應用等優點,所以是近年來研究低成本太陽能電池的重要領域之一。
    本論文研究主要分為兩大部分,第一部分是將之前超薄吸收層太陽能電池(ETA solar cell)的模擬結果製作成元件,因此我們使用奈米小球及凝膠狀(Sol-gel) IGZO經過退火的方式製作成多層的指叉狀結構當作電子傳輸層,之後利用浸泡成膜的方式將P3HT;或是利用刮刀塗佈將PBDTTT-C-T成膜在指叉狀結構的表面形成超薄吸收層,接下來利用TFB;或是使用PEDOT:PSS材料藉由刮刀塗佈將指叉狀的結構填滿當作電洞傳輸層,並且鍍上電極完成此元件,其中會使F4TCNQ 針對TFB進行濃度摻雜的改變,以討論其元件的轉換效率之變化。
    第二部分是以凝膠狀IGZO為電子傳輸層,之後利用P3HT: PCBM溶於高沸點溶劑(1,2-dichlorobenzen)DCB中並且以旋轉塗佈以及慢乾的方式作為主動層,完成有機無機混合太陽能電池,並且使用F4TCNQ對P3HT:PCBM進行摻雜及利用IGZO中In、Ga、Zn彼此間的比例調變來改變此結構的開路電壓(Voc),藉此達到更好的轉換效率。


    The Organic solar cell is one of the important areas of research low-cost solar cells in recent years. It’s because of component is quality of light and easy to carry, flexible application of the production process simple.
    This thesis is divided into two parts, first part will be made before ultra-thin absorber layer solar cell (ETA solar cell) of the simulation results into components, so we use the nano-ball and sol-gel IGZO produced the multilayer of porous structure as the electron transport layer after annealing, and then dip-coating the P3HT; or blade coating the PBDTTT-C-T film on the surface of the porous structure to form a ultra -thin absorption layer, then use TFB; Or the PEDOT: PSS materials by blade coating to fill up the porous structure as the hole transport layer, finally use the evaporating to plated the electrode to complete this component. We also make the F4TCNQ for TFB doping to change the carrier concentration to discuss the conversion efficiency of its components change.
    The second part it’s use the Sol-gel IGZO as the electron transport layer, and followed by use of P3HT : PCBM dissolve in the high boiling point solvent DCB as the active layer by using the spin coating and solvent-annealing to complete the organic-inorganic hybrid solar cells. Finally the P3HT and PCBM are doped with the F4TCNQ and to change the sol-gel IGZO each elements ratio to modulate the open circuit voltage (Voc) of the structure in order to achieve better conversion efficiency.

    摘要 I 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XIV Chapter 1 緒論 1 1.1前言 1 1.2太陽能電池歷史發展及簡介 2 1.3研究動機 9 1.3-1 有機太陽能電池的優點 9 1.3-2 超薄吸收層太陽能電池(ETA solar cell) 9 1.3-3 有機無機混合太陽能電池 10 1.4論文架構 10 Chapter 2太陽能電池原理 11 2.1太陽能電池的原理 11 2.2 太陽能電池的相關參數 13 2.3有機材料特性及簡介 17 2.4有機共軛高分子載子傳輸理論 18 2.4-1塊材限制與空間電荷限制電流理論 19 2.4-2 界面限制中的熱離子發射理論以及穿隧效應 20 2.5有機太陽能電池的原理及結構 22 Chapter3 有機太陽能電池製程、量測 25 3.1實驗材料的介紹 25 3.1-1 無機材料 25 3.1-2 有機材料 26 3.2有機太陽能電池的製作流程 30 3.2-1 主動層的成膜方式 30 3.2-2 ITO基板的圖樣化 32 3.2-3太陽能電池的元件製作 33 3.3太陽能電池的特性量測 40 Chapter4 超薄吸收層太陽能電池實驗結果與分析 44 4.1簡介 44 4.2數據分析 45 4.2-1以P3HT為光吸收層 45 4.2-2以PBDTT-C-T為光吸收層 50 4.3數據討論 52 Chapter5 有機無機混合太陽能電池實驗結果與分析 55 5.1簡介 55 5.2數據分析 56 5.2-1無機層厚度比較 56 5.2-2 有無摻雜的比較 58 5.3 數據討論 70 Chapter6 結論 73 6.1 超薄吸收層太陽能電池 73 6.2 有機無機混合太陽能電池 73 參考文獻 74

    [1] D. M. Chapin, C. S. Fuller, and G.L. Pearson, J. Appl. Phys. ,25, 676 (1954).
    [2] Zhao, A. Wang, and M. A. Green, Prog. Photovolt. Res. Appl. ,7, 471 (1999).
    [3] D. E. Carlson and C. R. Wronski, Appl. Phys.Lett. ,28, 671 (1976).
    [4] K. Sriprapa and P. Sichanugrist, Photovoltaic Energy Conversion,2003. Proceedings of 3rd World Conference on Volume 3, Page 2799-2800 (2003).
    [5] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason,and R. Noufi, Prog. Photovolt. Res. Appl. ,7, 311 (1999).
    [6] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J.Heeger, J. Chem. Soc. ,Chem.Commun. ,578 (1977).
    [7] C. W. Tang, Appl. Phys. Lett. ,48, 183 (1986).
    [8] B. O’Regan and M. A. Grätzel, Nature ,353, 737 (1991).
    [9] website of “Research Institute of Innovative Technology for the Earth, RITE”(http://www.rite.or.jp/).
    [10] G. Yu, K. Pakbaz, and A. J. Heeger, Appl. Phys.Lett. ,64, 3422 (1994).
    [11] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. ,15, 1617 (2005).
    [12] K. Kim, J. Liu, M. A. G. Namboothiry, and D. L.Carroll, Appl. Phys. Lett. ,90, 163511 (2007).
    [13] J. Nelson, Curr. Opin. Solid State Mater. Sci. ,6, 87 (2002).
    [14] R. McConnell, S. Kurtz, and M. Symko-Davies, Refocus. July/August (2005).
    [15] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science ,258, 1474 (1992).
    [16] H. Hoppe, N. S. Sariciftci, J.Mater. Res. ,vol 19, No7 (2004).
    [17] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. ,4, 455 (2005).
    [18] W. U. Huynh, J. J. Dittmer, N. Teclemariam, D.Milliron, A. P. Alivisatos, K. W. J. Barnham, Phys. Rev. B. ,67,115326 (2003).
    [19] H. Kim, S-H. Jin, H. Suh, and K. Lee, In Organic Photovoltaics IV ,edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE. ,Vol. 5215, p.111 (2004).
    [20] H. Hoppe, and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).
    [21] J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett. ,68, 3120 (1996).
    [22] Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R.Anderson, and O. Inganäs, Phys. Rev. B. ,61, 12957 (2000).
    [23] T. J. Savenije, J. M. Warman, and A.Goossens, Chem. Phys. Lett. ,287, 148 (1998).
    [24] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U.Scherf, E. Harth, A. Gügel, and K. Müllen, Phys. Rev. B. ,59, 15346 (1999).
    [25] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger,J. Chem. Soc. ,Chem. Commun. ,578 (1977).
    [26] N. F. Mott, and D. Gurney, Electronic Processes in Ionic Crystals, Oxford.
    [27] S. Karg, M. Meier, and W. Riess, J. Appl. Phys. ,82, 1951 (1997).
    [28] R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. ,A 119, 173 (1928).
    [29] Tae Jung Kim, Jae Jin Yoon, Tae Ho Ghong, Nilesh Barange, Jun Young Kim, Soon Young Hwang, and Young Dong Kim, Journal of the Korean Physical Society ,Vol. 59, No. 6, pp. 3396-3400 (2011).
    [30] Lijun Huo, Shaoqing Zhang, Xia Guo, Feng Xu, Yongfang Li, and Jianhui Hou, Angew. Chem. Int. Ed. ,50, 9697-9702 (2011).
    [31] Susmital Pal, Arun K. Nandi, J. Appl. Polymer Sci. ,6, 101 (2006).
    [32] Yuan Zhang, Bert de Bert, and Paul W. M. Bolm, Adv. Funct.Mater. ,19, 1901-1905 (2009).
    [33] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature. ,4 (2005).
    [34] Y. Zhao, X. Guo, Z. Xie, Y. Qu, Y. Geng, L. Wang, J. Appl. Phy. ,111 (2009).
    [35] Y. Zhao, Z. Xie, Y. Qu, Y. Geng, L. Wang, Appl. Phys. Lett. ,90, 043504 (2007).
    [36] H. Kim, W. W. So, S. J. Moon, Journal of the Korean Physical Society ,48 (2006).
    [37] Gun Hee Kim, Byung Du Ahn, Hyun Soo Shin, Woong Hee Jeong, Hee Jin Kim, and Hyun Jae Kim, Appl. Phys. Lett. ,94, 233501 (2009).
    [38] Gun Hee Kim, Woong Hee Jeong, and Hyun Jae Kim, Phys. Status Solidi A 207 No. 7, 1677-1679 (2010).
    [39] M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, A.N. Tiwari, Thin Solid Films ,480-481 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE