簡易檢索 / 詳目顯示

研究生: 吳宗倫
Wu, Zong-Lun
論文名稱: 醣苷水解酵素活性位點鄰近胺基酸序列與結構特性分析
Characteristic Analysis of Peptide Sequence and Structure around Active Site of Glycoside Hydrolases
指導教授: 唐傳義
Tang, Chuan Yi
口試委員: 林俊淵
廖崇碩
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 27
中文關鍵詞: 配體、活性位點、模板、胺基酸片段
外文關鍵詞: Ligand, Active Site, Template, Segment
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,主要的目的是從序列及結構分析醣苷水解酵素與配體結合的活性位點鄰近胺基酸特性。目前蛋白質有三級結構資訊的數量約有74,300個,蛋白質的三級結構能表示不同蛋白質的折疊方式或是在空間中小分子化合物與蛋白質結合的位置關係。從蛋白質結構分類資料庫,考慮含有催化區塊結構資訊的蛋白質,我們分別對醣苷水解酵素的第1、9、11、22個家族,建立含有配體與三級結構的蛋白質模板,透過配體與蛋白質結合在活性位點的位置關係,對應到序列上的某些胺基酸片段,以及對這些片段作分析。利用我們提出的這個流程,將此家族共同特性,用於判斷具有相似結構的蛋白質是否也具有醣類催化的功能。


    In this research, the objective is to analyze the residues, which are around the active site of Glycoside Hydrolases where the ligands bind, from sequence and structure. Currently, there are about 74,300 structures in Structural Classification of Proteins (SCOP)[1]. The structure of the protein can provide the information of different folds and the position where substrates bind with proteins in space. We consider the catalytic domains of the proteins, and construct the templates library which includes ligands and structures. Through mapping the relative positions, where ligands and proteins bind, to the corresponding sequences, there are some segments of the residues, and analysis of these segments. Utilized the flow chart, the analysis of the GH families is used to determine whether the protein with similar structure has the function of catalyzed glycoside or not.

    中文摘要 ............................................................................................................................ iii ABSTRACT ....................................................................................................................... iv 致謝詞 ................................................................................................................................. v CONTENTS ....................................................................................................................... vi Chapter 1 - Introduction ................................................................................................... 1 Chapter 2 - Material and Method .................................................................................... 3 2.1 Material ........................................................................................................... 3 2.2 Flow Chart ...................................................................................................... 3 2.3 Templates Construction ................................................................................. 4 2.4 Data Preprocessing ........................................................................................ 5 2.5 Distance Calculation ...................................................................................... 6 2.6 Segments Selection and Ligands Extraction ................................................ 6 2.7 Sequence Analysis .......................................................................................... 7 2.8 Structure Analysis .......................................................................................... 7 2.9 Properties ........................................................................................................ 8 Chapter 3 – Results and Discussion ................................................................................. 9 3.1 Results ............................................................................................................. 9 3.2 Targets Verification ...................................................................................... 10 3.3 Similar Structure but not in Glycoside Hydrolases Family ..................... 21 3.4 Comparison with GH009 3H3K 2RGK ..................................................... 23 Chapter 4 - Conclusion and Future work ...................................................................... 24 4.1 Conclusion .................................................................................................... 24 4.2 Future work .................................................................................................. 24 REFERENCES ................................................................................................................. 26

    1. Murzin, A.G., et al., SCOP: a structural classification of proteins database for the
    investigation of sequences and structures. Journal of molecular biology, 1995.
    247(4): p. 536-540.
    2. Edgar, R.C. and S. Batzoglou, Multiple sequence alignment. Current opinion in
    structural biology, 2006. 16(3): p. 368-373.
    3. Larkin, M., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007. 23(21):
    p. 2947.
    4. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high
    throughput. Nucleic acids research, 2004. 32(5): p. 1792.
    5. Simossis, V. and J. Heringa, PRALINE: a multiple sequence alignment toolbox that
    integrates homology-extended and secondary structure information. Nucleic
    acids research, 2005. 33(suppl 2): p. W289.
    6. McGuffin, L.J., K. Bryson, and D.T. Jones, The PSIPRED protein structure prediction
    server. Bioinformatics, 2000. 16(4): p. 404.
    7. Active Site. Available from: http://en.wikipedia.org/wiki/Active_site.
    8. Cantarel, B.L., et al., The Carbohydrate-Active EnZymes database (CAZy): an
    expert resource for glycogenomics. Nucleic acids research, 2009. 37(suppl 1): p.
    D233.
    9. Berman, H.M., et al., The protein data bank. Nucleic acids research, 2000. 28(1): p.
    235.
    10. Holm, L. and C. Sander, Protein structure comparison by alignment of distance
    matrices. Journal of molecular biology, 1993. 233: p. 123-123.
    11. Shatsky, M., R. Nussinov, and H. Wolfson, MultiProt¡Xa multiple protein structural
    alignment algorithm. Algorithms in Bioinformatics, 2002: p. 235-250.
    12. Henrissat, B., A classification of glycosyl hydrolases based on amino acid
    sequence similarities. Biochemical Journal, 1991. 280(Pt 2): p. 309.
    13. ViewerLite, W.L., version 4.2. 2000. Molecular Simulations. Inc. San Diego, CA.
    14. DeLano, W.L., The PyMOL molecular graphics system. 2002.
    15. Roseman, M.A., Hydrophobicity of the peptide C= O ···H---N hydrogen-bonded
    group* 1. Journal of molecular biology, 1988. 201(3): p. 621-623.
    16. Laskowski, R.A., et al., PDBsum: a Web-based database of summaries and
    analyses of all PDB structures. Trends in Biochemical Sciences, 1997. 22: p.
    488-490.
    17. Itoh, T., et al., Crystal structure of YihS in complex with D-mannose: structural
    annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to
    an aldose-ketose isomerase. Journal of molecular biology, 2008. 377(5): p.
    27
    1443-1459.
    18. Rost, B. and C. Sander, Conservation and prediction of solvent accessibility in
    protein families. Proteins-Structure Function and Genetics, 1994. 20(3): p.
    216-226.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE