研究生: |
潘柏安 Pan, Po An |
---|---|
論文名稱: |
高電催化活性聚吡咯電極於染料敏化太陽能電池之研究 Development of High Electrocatalytic Activity Polypyrrole Electrode in Dye-Sensitized Solar Cells |
指導教授: |
陳福榮
Chen, Fu Rong |
口試委員: |
蔡春鴻
Tsai, Chuen Horng 謝建國 Hsieh, Chien Kuo |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 對電極 、聚吡咯 、蒽醌-2-磺酸鈉 、參雜導電高分子 、電催化活性 |
外文關鍵詞: | AQSA, Doped Polypyrrole |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與傳統矽晶(Crystal Silicon-based)太陽能電池相比之下,染料敏化太陽能電池 (簡稱染敏電池)為一種製程簡單而成本低廉的新一代太陽能電池。目前染敏電池之光電轉換效率經過實驗證實,最高可達近14%。一般多半使用以貴金屬-白金(Platinum, Pt)作為電池的對電極,目的為藉由良好的電催化活性,使電解液中的碘根與碘三根離子離子對(Iodide/ Triodide, I3-/I-)有效地進行還原反應,這也是白金材料得以作為目前染敏電池主流對電極材料的主要原因;但也因而使染敏電池受到成本以及材料存量的限制,導致元件邁向量產化受到了阻礙。[1].[2]
近年來,相關研究皆聚焦於解決上述問題而努力尋找新材料替代白金對電極;亦即一兼具低成本、高電催化活性對電極之染敏電池。
聚吡咯(Polypyrrole, PPy)為一導電高分子本身具備良好的導電性,其製程簡單且成本低廉,並具備一定的電催化還原特性,因此可適用於染料敏化太陽能電池之對電極應用。此外,對於不同種類電極基板的相容性高,不論是於玻璃基板上具有極佳附著度,或是於軟性基板上擁有良好可撓性、高韌性,皆顯示聚吡咯此一材料之發展潛力。然而,僅憑單一聚吡咯材料作為電池對電極下,本身電催化活性相較一般白金對電極依然有相當落差,造成其電池轉換效率尚不足以達到與一般白金對電極之染敏電池互相競爭之程度。
因此,本研究透過於聚吡咯中參雜蒽醌-2-磺酸鈉(Anthraquinone-2-Sulfonic Acid Sodium Salt, AQSA),除了藉由蒽醌-2-磺酸鈉的參雜更進一步提升聚吡咯的導電性外,藉由參雜濃度的控制,顯著提升聚吡咯作為對電極的電催化特性。
總而言之,本研究為了要解決上述困境: (1)選擇以製程簡單且成本低廉的導電高分子化合物聚吡咯並參雜蒽醌-2-磺酸鈉作為染敏電池的對電極材料, (2)並將聚吡咯作進一步的參雜處理以提升對電極電催化還原性,最終製成低成本、高光電轉換效率之染料敏化太陽能電池。
Dye-sensitized solar cells (DSSCs) have drawn great attention so far due to their low cost and easy fabrication. Considerable efforts have been made to improve the efficiency of the dye, electrolyte and the working electrode, but less attention has been paid to the counter electrode.
Generally, platinum (Pt) is mostly applied as the material selection of counter electrode forming by thermal deposition H2PtCl6 solution or sputtering method. However, owing to the intrinsic limitation of noble metal, that is, rare amount which leads to high material price making a huge obstacle for mass production. Besides, low temperature demand for flexible substrates also restricts Pt based counter electrodes.
Polyppyrole (PPy)[3], a promising conductive polymer, which is well-known as one of the pioneering polymeric materials to break the myth that polymers have no electrical conductivity. With the beneficial conductivity, low cost & easy fabrication process, and outstanding electrocatalytic activity for reducing I3- ions after doping treatment all indicate PPy a potential candidate to replace Pt as counter electrode in DSSC[4],[5],[6]. Besides, excellent substrate compatibility of PPy could broaden the availability of DSSC into flexible substrate and portable device application.
In this research, PPy is deposited with the doping of anthraquinone-2-sulfonic acid sodium salt (AQSA) by in-situ chemical deposition on fluorine-doped tin oxide glass (FTO) as counter electrode for DSSC in order to enhance the electrical conductivity and electrocatalytic activity of PPy.
The excellent photoelectric properties, low cost & easy fabrication and substrate compatibility all allow AQSA-doped PPy formed electrode to be a promising alternative for DSSCs.
[1] Regan B O, Grätzel M,et al. “A low cost high efficiency solar cell based on
dye-sensitized colloidal TiO2 film”, Nature, (1991),353-373.
[2] Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, et al. Science , 334(2011), 629-634
[3] Paul Saville, Defence R&D Canada-Atlantic, 2005
[4] J.Wu et al. Journal of Power Sources, 181(2008), 172-176
[5] Xia, J. Mater. Chem, 21, 4644(2011)
[6] Panagiotis Lianos, Electrochimica Acta, 56(2011), 2004-2008
[7] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller,P. Liska, N.
Vlachopoulos,M. Grätzel, J. Am. Chem. Soc., 115(1993), 6382
[8] M. K. Nazeeruddin, F. de Angelis, S. Fantacci et al., Journal of the American Chemical Society, 127, 48(2005), 16835–16847
[9] M. Towannang et al., Synthetic Metals, 162(2012), 1954– 1960
[10] L.M. Abrantes et al., Electrochimica Acta,47(2002), 1481–1487
[11] M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry
Reviews, 4(2003), 145–153
[12] M. Dürr, A. Yasuda, and G. Nelles, Appl. Phys. Lett., 89, 061110(2006)
[13] M. Grätzel, Nature, 414(2001), 338-344
[14] M. Grätzel, J. Photochem. and Photobio. A:Chem., 164(2004), 3
[15] M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic
cells.", Inorg Chem, 44, 20(2005), 6841-6851.
[16] Federico Capasso, Science, 235(1987), 172-176
[17] Shawn A. Sapp, C. Michael Elliott, Carlo A. Bignozz, “Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells”, J. AM. CHEM. SOC., 124(2002), 11215- 11222
[18] Liguo Wei, Yulin Yang, et al. “N,N’-Bis((6-methoxylpyridin-2-yl)methylene)-p-phenylenediimine based d10 transition metal complexes and their utilization in co-sensitized solar cells”, Dalton Trans., 43(2014), 11361–11370
[19] Amaresh Mishra, Markus K. R. Fischer, and Peter Bäuerle, Chem. Int. Ed., 48(2009), 2474 – 2499
[20] K Tennakone, et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex”, J. Phys. D: Appl. Phys., 31(1998), 1492–1496
[21] O’Regan, D.T. Schwartz, “Efficient photo-hole injection from adsorbed cyanine
dyes into electrodeposited copper(I) thiocyanate thin films”, Chem. Mater., 7(1996), 1349-1354
[22] Michael D. McGehee, Science, 334(2011), 607-608
[23] Wataru Kubo, Shingo Kambe, Shogo Nakade, Takayuki Kitamura, Kenji Hanabusa, Yuji Wada, Shozo Yanagida, “Photocurrent- Determining Processes
in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes”, J. Phys. Chem. B, 107(2003), 4374-4381
[24] T.N. Murakami, S. Ito, Q. Wang, M. Grätzel, et al. J. Electrochem. Soc., 153 (2006), A2255
[25] George Tsekouras, Attila J. Mozer, and Gordon G. Wallace, Journal of The
Electrochemical Society, 155(2008), 7, K124-K128
[26] Joseph D. Roy-Mayhew, Gerrit Boschloo, Anders Hagfeldt, and Ilhan A. Aksay,
ACS Appl. Mater. Interfaces, (2012)
[27] Jinkyu Han, Hyunju Kim, Dong Young Kim, et al. ACSNano, 4(2010), 3503-3509
[28] Chenghao Bu, Qidong Tai, Yumin Liu, Shishang Guo, Xingzhong Zhao,
Journal of Power Sources, 221(2013) 78-83
[29] N. Ikeda, K. Teshima, T. Miyasaka, Chem. Commun., 2006(2006), 1733
[30] T.N. Murakami, M. Grätzel, Inorganica Chimica Acta, 361(2008), 572–580
[31] 蘇明德,科學發展期刊,台灣,452,70-71,民99
[32] M. F. Rubner, Molecular Electronics, Research Studies Press, chapter 2(1992)
[33] 國立台灣大學 普通化學 教學教材; 民93
[34] A. Angli, Gazz. Chim. Ital., 46(1916), II279
[35] 謝崇偉,「雙二噻吩環戊烷衍生物的合成與性質探討」,
國立中央大學化學研究所,碩士論文,民94
[36] A. Dall Olio, G. Dascola, V. Varacca, V. Bocchi, Acad. Sci. Ser.,
433(1968), C267
[37] 盧藝,「導電高分子與聚胺基甲酸酯複合材料之研究」,
國立中央大學化工與材料工程研究所,碩士論文,民91
[38] G.B. Street, T.C. Clarke, R.H. Geiss, V.Y. Lee, A. Nazzal, P. Pfluger and
J.C. Scott, JOURNAL DE PHYSIQUE, C3(1983), 599
[39] 林佑宸,「聚吡咯導電高分子積層化成箔之表面型態、疊層電學特性之研究」,國立台灣科技大學高分子研究所,碩士論文,民95
[40] 王本誠,國立清華大學 工程與系統科學系 電子報,民99
[41] A. Hauch, A. Georg, Electrochimica Acta, 46(2001), 3457–3466
[42] Shan Lu, Shasha Wang, et al. J. Mater. Chem. A, 2(2014), 12805–12811
[43] Sarmimala Horea, Carmen Vetterb, Rainer Kerna, Herman Smitc, Andreas
Hinsch, Solar Energy Materials & Solar Cells, 90(2006) 1176–1188
[44] Nakade S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T et al. J. Phys.
Chem. B, 106(2002), 10004-10010
[45] N. Papageorgiou, W.F Maier, M. Gra¨tzel, J. Electrochem. Soc., 144(1997), 876
[46] 宜特科技股份有限公司
[47] 黃英碩,科儀新知,第二十六卷,第四期
[48] G.Binning, C. F. Quate, and Ch. Gerber, “Atomic Force Microscopy”,
Physical Review Letters, 56(1986), 930
[49] 李姿儀,「利用多波長UV/VIS吸收光譜建立廢水中SS與COD自動監測技術之可行性研究」,國立中央大學環境工程研究所,碩士論文,民98
[50] 陳建清,「LiNi0.8Co0.2O2 陰極材料製程與改質研究」,
國立中央大學化學工程與材料工程研究所,碩士論文,民91
[51] C. Gabrielli, “Identification of Electrochemical Processes by Frequency
Response Analysis”, Technical Report, 4(1984), 83
[52] Koide, N., A. Islam, et al., "Improvement of efficiency of dye-sensitized
solar cells based on analysis of equivalent circuit.", Journal of Photochemistry
and Photobiology A: Chemistry, 182 (2006), 3, 296-305
[53] Liyuan Han, Naoki Koide, Yasuo Chiba, Ashraful Islam, Takehito Mitate,
C.R.Chimie, 9(2006), 645-651
[54] 劉建宏,「膠態電解質染料敏化太陽能電池之長效性研究」,
國立清華大學工程與系統科學所,碩士論文,民101
[55 ] G. Yue et al., Electrochimica Acta, 92(2013), 64– 70
[56] Bard, A. J., Faulkner, L. R.: Electrochemical Methods, John Wiley, (1980)
[57]呂怡萱,「二氧化鈦奈米管於染料敏化太陽能池之探討」,國立中央大學化學研究所,碩士學位論文,民95
[58] Vishal N. Koparde and Peter T. Cummings., J. Phys. Chem. B, 109(2005), 51
[59] N H Vu et al, J. Phys.: Condens. Matter, 24(2012), 405501
[60] Shingo Kambea, Shogo Nakadeb, Yuji Wadaa, Takayuki Kitamuraa and Shozo
Yanagida, J. Mater. Chem., 12(2002), 723-728
[61] 余景榆,「二次摻雜山梨醇對臨場沉積聚吡咯薄膜導電性影響之研究」,
國立清華大學工程與系統科學所,碩士論文,民100
[62] L. Chen et al., Electrochimica Acta, 55(2010), 3721–3726
[63] A. Hauch, A. Georg, Electrochimica Acta, 46(2001), 3457–3466
[64] Sang Soo Jeon, Chulwoo Kim, Jaejung Ko, and Seung Soon Im, J. Phys.
Chem. C, 115(2011), 22035–22039
[65] Tzu-Chien Wei, Chi-Chao Wan, Yung-Yun Wang, Chih-ming Chen, and Han-
sheng Shiu, J.Phys. Chem. C, 111(2007), 4847-4853
[66] P. Wachter et al., Journal of Photochemistry and Photobiology A: Chemistry, 197
(2008), 25–33
[67] Dalal Noureldine, Tharallah Shoker et al., J. Mater. Chem., 22(2012), 862–869
[68] Kung et al., ACS Nano., 28(2012), 6, 8, 7016-7025.
[69] X. Zhang et al., Journal of Power Sources, 246(2014), 491-498
[70] W.-Y. Wang et al., Electrochimica Acta, 137(2014), 721–727
[71] Mingxing Wu et al., J. Phys. Chem. C, 118(2014,), 16727−16742