簡易檢索 / 詳目顯示

研究生: 江佳應
Chia-Ying Chiang
論文名稱: 沸水式反應器於加氫水化學狀態下實施催化性與抑制性被覆之防蝕效益研究
指導教授: 蔡春鴻
Chuen-Horng Tsai
葉宗洸
Tsung-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 148
中文關鍵詞: 沸水式反應器催化性被覆抑制性被覆
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核電廠採用的抗腐蝕不□鋼,理論上應至少具有四十年的使用年限,不會因發生腐蝕而影響運轉安全。但1974年起,沸水式反應器(Boiling Water Reactor, BWR)壓力槽內部組件發生應力腐蝕龜裂(Stress Corrosion Cracking, SCC)的劣化問題日益嚴重,最常發生的劣化案例為不□鋼組件的沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC),及輻射促進應力腐蝕龜裂(Irradiation-Assisted Stress Corrosion Cracking, IASCC)。為了解決服役中電廠壓力槽內部不易更換組件的腐蝕現象,多年以來,全世界已有超過四十座以上的BWR電廠採用了加氫水化學 (Hydrogen Water Chemistry, HWC) 技術,此一技術乃在飼水中加注氫氣,以抑制爐水溶氧量,降低組件材料的電化學腐蝕電位(Electrochemical Corrosion Potential, ECP),達到防蝕的目的。對於主冷卻水迴路的部分組件HWC確實能達到保護的效果,但HWC會因爐內管線表面氧化物在重組而導致大幅增加管路輻射劑量,因而有增加維護人員輻射劑量的副作用;因此又有催化性被覆(Catalytic Coatings)技術(或稱貴重金屬覆膜技術)的開發,利用貴重金屬可催化氫氣的氧化反應特性,促進HWC的效益,使得在低注氫量下即可達到保護效果,此種技術已經在全世界有超過三十座的核能電廠機組使用中。另外還有一種抑制性被覆(Inhibitive Protective Coatings,IPC)技術的研究。抑制性被覆技術原理與催化性被覆不同之處在其於組件表面形成一阻絕被覆以降低水中氧與過氧化氫的還原反應為目的,進而降低不□鋼組件的腐蝕現象。
    本論文是透過最新獲得的高溫環境模擬電位極化掃描實驗,取得最新的貴重金屬被覆高溫電化學實驗數據以及本實驗室中有關抑制性被覆的電化學實驗數據,再將數據用以校正DEMACE電腦模擬程式,再進而對台灣電力公司的核一廠與核二廠做模擬預測;由模擬預測結果顯示貴重金屬被覆的確能夠以較低的注氫量達到使腐蝕電位降低的目標。同時程式模擬結果也顯示貴重金屬被覆在過低的注氫量時,因為貴重金屬同時催化爐水中少量的溶氧,而使的ECP反而上升的現象,符合理論預期,顯示模擬程式的精確度。
    在抑制性被覆方面,模擬結果也顯示,抑制性被覆在未注氫狀態,即因隔絕功用,降低各氧化還原劑的反應速率,而達到降低電化學腐蝕電位與裂縫成長速率的目的。比較貴重金屬被覆,抑制性被覆有不必注氫即可達到保護效果的優點。


    摘 要 i 圖目錄 v 表目錄 x 第一章 前言 1 第二章 文獻回顧 5 2.1 應力腐蝕龜裂 5 2.1.1 張應力 5 2.1.2 腐蝕環境 6 2.1.3 高敏感性材料 6 2.2 加氫水化學(Hydrogen Water Chemistry,HWC) 7 2.3 貴重金屬被覆(Noble Metal Chemical Addition,NMCA) 10 2.4 抑制性被覆(Inhibitive Protective Coating,IPC) 13 2.5 數值模擬模式 14 第三章 基本理論 17 3.1 電化學腐蝕電位的計算 17 3.1.1 混合電位模式 17 3.1.2 組件氧化膜對ECP的影響 25 3.2 腐蝕成長速率的計算 26 3.3 輻射分解產物濃度的計算 30 3.3.1 輻射分解產率 30 3.3.2 化學反應 31 3.3.3 對流 34 3.3.4 雙相流內的氣體交換 34 3.3.5 化學成份濃度的一般解 35 3.4 快中子與加馬射線劑量率分佈的計算 37 3.4.1 爐心內部的中子通率計算 40 3.4.2 爐心外側面的中子通率計算 43 3.4.3 爐心外兩端的中子通率計算(劑量點於圓柱體射源中心線上) 44 3.4.4 爐心外兩端的中子通率計算(劑量點不位於圓柱體射源中心線上) 46 3.4.5 數值計算參數 47 第四章 研究方法 52 4.1 高溫電化學實驗 52 4.2 數值模擬架構 55 第五章 結果與討論 65 5.1 高溫電化學動態極化掃描實驗結果 65 5.1.1 不同溶氧濃度動態極化掃描曲線 65 5.1.2 不同溶氫濃度動態極化掃描曲線 69 5.1.3 除氧狀態動態極化掃描曲線 73 5.1.4 理論平衡電位與交換電流密度計算 76 5.2 加氫水化學中各氧化還原劑劑量濃度的變化 81 5.2.1 核一廠各氧化還原劑劑量濃度變化結果 82 5.2.2 核二廠各氧化還原劑劑量濃度變化結果 86 5.3 貴重金屬被覆數值模擬結果 89 5.3.1 核一廠的貴重金屬被覆模擬結果 90 5.3.2 核二廠的貴重金屬被覆模擬結果 93 5.4 抑制性被覆數值模擬結果 96 5.4.1 核一廠的抑制性被覆模擬結果 96 5.4.2 核二廠的抑制性被覆模擬結果 98 第六章 結論 141 第七章 參考文獻 142

    1. R. L. Cowan, Nuclear Engineering International, January 1986, p. 26.

    2. M. E. Indig, "Recent Advances in Measuring ECPs in BWR Systems," Proc. 4th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, NACE, Jekyll Island, GA., Aug. 6-10, 1989, p. 4-411.

    3. R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.

    4. Nuclear Regulatory Commission, Cracking of Vertical Welds in the Core Shroud and Degraded Repair , NRC Information Notice 97-17, April 4, 1997.

    5. L. W. Niedrach, Corrosion, Vol. 47, p. 162 (1991).

    6. Y. J. Kim, L. W. Niedrach, M. E. Indig, and P. L. Andresen, Journal of Metals, Vol. 44, No. 2, p. 14 (1992).

    7. Tsung-Kuang Yeh and D. D. Macdonald, "Modeling the Development of Damage in BWR Primary Coolant Circuits," Proc. 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, NACE, Breckenridge, Colorado, Aug. 6-10, 1995, p. 909.

    8. Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," CORROSION/96, NACE, Denver, Colorado, Mar. 24-29, 1996, Paper Number 105.

    9. R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, GA, October 1-3, 1997, EPRI.

    10. B. Stellwag, M. Lasch, and U. Staudt, “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants,”1998 JAIF Conference p186-193.

    11. Peter L. Andresen and Tom Angeliu, GE Corp. Research and Development Center, “The Effect of In-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288℃ water,” Corrosion96, The NACE International Annual Conference and Exposition, Paper No.84.

    12. L. W. Niedrach, “Effect of Palladium Coatings on the Corrosion Potential of Stainless Steel in High-Temperature Water Containing Dissolved Hydrogen and Oxygen,” Corrosion-March 1991, pp.162-169.

    13. Peter L. Andresen, GE Corp. Research and Development Center, “Mitigation of Stress Corrosion Cracking by Underwater Thermal Spray Coating of Nobel Metals,” Corrosion95, The NACE International Annual Conference and Corrosion Show, Paper No.412.

    14. Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," CORROSION/96, NACE, Denver, Colorado, Mar. 24-29, 1996, Paper Number 105.

    15. R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, GA, October 1-3, 1997, EPRI.

    16. 李明墉,”應用抑制性被覆之敏化304不□鋼於高溫純水環境中之腐蝕行為研究”,國立清華大學碩士論文,民國90年7月.

    17. 鄭宇翔,”高溫注氫純水環境下採行抑制性被覆304不□鋼之腐蝕行為研究”,國立清華大學碩士論文,民國91年7月.

    18. 陳志宏,”氧化鋯被覆處理304不□鋼在高溫水溶液之應力腐蝕裂縫成長速率研究”,國立清華大學碩士論文,民國93年1月.

    19. P.L. Andresen, F.P. Ford, “Life Prediction by mechanistic Modeling and System Monitoring of Environmental Cracking of Iron Alloys in Aqueous Systems”, Materials Science and Engineering, A103, p.167, 1988.

    20. R.L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry”, Nuclear Energy, 36, No.4, p.257, 1997.

    21. S. Hettiarachchi, R.J. Law, W.D. Miller, T.P. Diaz, R.L. Cowan, “First Application of NobleChemTM to an Operating BWR”, Proceedings of the 1998 JAIF Water Chemistry Conference p. 155, October 1998.

    22. S. Hettiarachchi et al, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internals”, Proc. of 8th Intl. Symposium on Environment Degradation of Materials in Nuclear Power Systems-Water Reactor, p.535, 1997.

    23. Y.J.Kim and P.L.Anderson,”Application of Insulated Protective Coatings for Reuction of Corrosion Potential in High Temperature Water”,Corrosion 96,NACE,Denver,Colorado,Mar.24-29,1996,Paper Number 105.

    24. R.Pathania,Evaluation of ZrO2 Coating to Mitigate IGSCC,BWRVIP Mitigation Committee Meeting,Lake Buena Vista,FL,Dec. 1-2,1999,EPRI.

    25. B.Stellwag and R.Kilian,Siemens Nuclear Power GmbH U.Staudt,VGB Germany ”Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants”,3rd Woekshop on LWR Coolant Water Radiolysis and Electrochemistry.,October 27.,2000.

    26. 劉展東,葉宗洸,蔡春鴻,「 抑制性被覆後之304不□鋼在高溫純水環境中的電化學行為研究」,海峽兩岸防蝕年會論文,2004.

    27. J. Takagi, I. Kato, K. Ishigure and N. Fujita, “Simulation Study on Water Radiolysis in BWR Primary Systems”, Proceeding of the 3rd International Conference on Water Chemistry of Nuclear Reactor Systems, Bournemouth, U.K., Octocber 17-21,1983, Vol.1, p.381, British Nuclear Energy Society, London(1983).

    28. E. Ibe and S. Uchida, “Analytical Evaluation of Water Radiolysis in BWRs ”, Proceeding of the 3rd International Conference on Water Chemistry of Nuclear Reactor Systems, Bournemouth,U.K., Octocber 17-21,1983, Vol.1, p.17, British Nuclear Energy Society, London(1983).

    29. C. P. Ruiz et al., “Modeling Hydrogen Water Chemistry for BWR Applications ”, EPRI NP-6386,Electric Power Research Institute,June 1989.

    30. T. K. Yeh, D. D. Macdonald, and A. T. Motta, ”Modeling Water Chemistry, ECP, and Crack Growth Rate in the BWR Heat Transport Circuits-I. The DAMAGE-PREDICTOR Algorithm”, Nuclear Science and Engineering, Vol. 121,p. 468(1995).

    31. T. K. Yeh and F. Chu,“An Improved Model for Assessing the Effectivenesss of Hydrogen Water Chemistry in Boiling Water Reactors”, Nuclear Science and Engineering, Vol 139, 221-233c (2001).

    32. M.G.Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill International (1987).

    33. W.A.Stien, “A New Equation for Heat and Mass Transfer in Pipe Flow-PART 2”,International Chemical Engineering,Vol.32,p.439(1992)

    34. L.W. Niedrach, W.H. Stoddard, “Corrosion Potential and Corrosion Behavior of AISI 304 Stainless Steel in High Temperature Water Containing Both Dissolved Hydrogen and Oxygen”, Corrosion Vol.42, No. 12, p696, 1986.

    35. 葉宗洸, 王秋蘋, 江佳應, 開執中, 「貴重金屬化學添加對核一、二廠飼水加氫效果增益研究與預測」,期末報告書, 6~9頁, 民國89年8月.

    36. D.D.Macdonald, M.Urquidi- Macdonald, P.C.Lu, “The Coupled Environment Fracture Model-A deterministic Method for Calculating Crack Growth Rates”, CORROSION/94, NACE, Baltimore, MD,Feb.28 March 4,1994,Paper No.246

    37. D.D.Macdonal et al.,”Theoretical Estimation of Crack Growth Rates in Type304 Stainless Steel in BWR Coolant Environments,” Corrosion , Vol.52 , p.768-785(1996).

    38. P.Ford,et al, Corrosion Assisted Cracking of Stainless and Low-Alloy steel in LWR Environments, Final Report, EPRI NP-5064M, Feb. 1987.

    39. J.Congleton,et al,Corrosion Science, Vol.25, p.633, 1985.

    40. D.S.Wilkinson and V.Vitek, Acta Met., Vol.30, p.1723, 1982

    41. A.J.Elliot,RateConstants and G-Values for the Simulation of the Radiolysis of Light Water over the Range 0-300℃,Atomic Energy of Canada Limited,AECL-11073,October,1994.

    42. J. Takagi, “Radiolysis Modeling for BWR Primary System”, Workshop on LWR Coolant Water Radiolysis, Toyota,Japan, October 19, 1998.

    43. E. Ibe, M.Sakagami ,and S. Uchida, “Theoretical Model Analysis for Effects of Hydrogen Injection on Radiolysis of Coolant Water in BWR”, Journal of Nuclear Science and Technology,23[1], p. 11-28 (January 1986).

    44. J.A.Blakeslee,ZEBRA-A Computer Code for the Steady-State Thermal Analysis of Light Water Cooled Nuclear Power Reactor,Master Paper,Department of Nuclear Engineering,The Pennsylvania State University,1974.

    45. 葉宗洸、王秋蘋、江佳應,「輕水式反應器壓力槽內部組件易遭致輻射引發劣化之位置預測-Ⅱ.沸水式反應器」,核子科學期刊,第37卷,第2期,第108-121頁

    46. Arthur B. Chilton,Principles of Radiation shielding, Prentice-Hall,Inc., 1984, p.92.

    47. T. Rockwell, III, ed., Reactor Shielding Design Manual, USAEC Report TID-7004 , Div. of Reactor Development, March 1956.

    48. E. P. Blizard and L. Abbott, ed., Reactor Handbook, Vol. 3, Part B, Shielding, Interscience Publishers, New York, 1962.

    49. A.B.Chilton,Principles of Radiation Shielding,Page 231 , Prentice-Hall , Englewood Cliffs,NJ,1984

    50. K. Farrell and A.E. Richt, in: Effects of Radiation on Structural Material, Eds. J.A. Sprague and D. Kramer, ASTM STP 683 (American Society and for Testing and Materials , 1979) pp. 427-439.

    51. June-Bok Lee, B.S., M.S., Electrochemical Approach to the Corrosion Problems of Several Iron-Nickel-Chromium Alloys in High Temperature High Pressure Water, The Ohio State University, 1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE