簡易檢索 / 詳目顯示

研究生: 楊澤邦
Tse-Pan Yang
論文名稱: 軟性基板之有機太陽能電池製程研究
Fabrication of organic solar cells on flexible substrates
指導教授: 洪勝富
Sheng-Fu Horng
孟心飛
Hsin-Fei Meng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 太陽能電池有機共軛高分子塊材異質接面可撓式基板PI基板PET基板
外文關鍵詞: solar cells, conjugated polymer, bulk heterojunction, flexible substrate, PI substrate, PET substrate, P3HT, PCBM, PEDOT:PSS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機共軛高分子軟性基板太陽能電池具有製程簡易適用於捲軸式連續製程、可製作大面積、質輕易於攜帶且屬於可撓性元件應用層面廣泛等優點,也是非常具有發展潛力且為研究低成本太陽能電池的重要領域。
    在本研究以P3HT(poly(3-hexylthiophene))與PCBM( [6,6]-phenyl-C61-butyric- acid methyl ester)共軛高分子當作主動層吸光材料,結構上則是以P3HT與PCBM混合於鄰二氯苯(1,2-Dichlorobenzene, DCB)中,塊材異質接面(bulk heterojunction)能夠有效的提高載子的傳輸效率,利用旋轉塗佈(spin-coating)的方式成膜在可撓曲式軟性基板上,選用已經圖案化氧化銦錫(Indium Tin Oxide, ITO)的polyimide (PI)基板和polyethylene terephthalate(PET)基板。
    研究中成功製作出在PI基板上高能量轉換效率(power conversion efficiency, PCE)有機共軛高分子太陽能電池,PCE值已經達3.8%是目前世界最高效益,整體元件效益和之前最高紀錄相比提升達13%。PET基板上的有機共軛高分子太陽能電池利用微波針對電動傳輸層(PEDOT:PSS)加熱方式有顯著的效果,加熱特性具有選擇性、加熱快速和節能的優點。


    Conjugated polymer solar cells on flexible substrate exhibit many advantages such as the simple processing feasibility for roll-to-roll continuously fabrication、potential to scale up and for large area、lightweight、easy to carry and the extensive application. Therefore, polymer solar cells are under intensive important research.
    In this study, we use P3HT and PCBM conjugated polymer as absorption material. A better structure called bulk heterojunction by P3HT and PCBM blending system in DCB, and spin-coating on patterned ITO PI and PET flexible substrates.
    We successfully developed the highest PCE 3.8% on PI substrate of the global research and promote the PCE 13% higher than that was done on the flexible substrate before. In PET substrate series, organic solar cells with microwave annealing show the PCE of 1.51% which is higher than that of the cells with hot plate annealing or non-treatment.

    中文摘要……………………………………………………………………………Ⅰ 英文摘要……………………………………………………………………………Ⅱ 致謝…………………………………………………………………………………Ⅲ 目錄…………………………………………………………………………………Ⅴ 圖表目錄……………………………………………………………………………Ⅷ Chapter 1 緒論 1-1 研究背景……………………………………………………………………1 1-1-1 世界能源與太陽能………………………………………………1 1-1-2 太陽能電池發展……………………………………………………2 1-1-3 有機太陽能電池發展………………………………………………4 1-1-4 軟性基板有機太陽能電池發展……………………………………7 1-2 研究動機………………………………………………………………………8 1-2-1 有機太陽能電池機會與特色……………………………………8 1-2-2 軟性基板有機太陽能電池機會與特色…………………………9 1-2-3 P3HT與PCBM混合軟性基板有機太陽能電池…………………10 1-3 論文架構……………………………………………………………………10 Chapter 2 實驗原理 2-1 太陽電池基本原理…………………………………………………………11 2-2 太陽電池基本參數…………………………………………………………15 2-3 共軛高分子材料特性………………………………………………………19 2-4 有機太陽電池元件理論……………………………………………………21 2-4-1 共軛高分子元件能帶圖…………………………………………21 2-4-2 共軛高分子的載子傳輸理論……………………………………24 2-4-3 其它相關理論……………………………………………………26 Chapter 3 實驗流程與材料介紹 3-1 元件製作流程………………………………………………………………27 3-2 ITO基板蝕刻與圖樣化……………………………………………………27 3-3 有機高分子元件製作………………………………………………………30 3-3-1 ITO清洗及表面處理………………………………………………30 3-3-2 電洞傳輸層(PEDOT:PSS)薄膜……………………………………30 3-3-3 主動層溶液配製…………………………………………………31 3-3-4 有機高分子成膜…………………………………………………32 3-3-5 陰極蒸鍍…………………………………………………………32 3-3-6 封裝………………………………………………………………33 3-4 元件量測……………………………………………………………………34 3-4-1 光電I-V特性量測………………………………………………34 3-4-2 表面平坦度AFM量測……………………………………………34 3-4-3 紫外線與可見光譜儀量測………………………………………35 3-4-5 螢光光譜儀………………………………………………………35 3-5 材料介紹……………………………………………………………………37 3-5-1 軟性基板材料……………………………………………………37 3-5-2 電子電洞傳輸材料………………………………………………39 3-5-3 主動層材料………………………………………………………40 3-5-4 陰極材料…………………………………………………………41 Chapter 4 實驗設計與結果討論 4-1 實驗構想與設計……………………………………………………………42 4-1-1 實驗構想………………………………………………………42 4-1-2 實驗設計…………………………………………………………43 4-2 PI基板之高效益有機太陽能電池…………………………………………45 4-2-1 電動傳輸層選擇………………………………………………45 4-2-2 主動層溶液濃度選擇……………………………………………47 4-2-3 主動層轉速(厚度)選擇……………………………………………49 4-2-4 主動層退火溫度選擇……………………………………………51 4-2-5 主動層P3HT/PCBM比例選擇……………………………………53 4-2-6 最高效益軟板有機太陽能電池…………………………………61 4-3 有機太陽能電池在PET基板………………………………………………63 4-3-1電動傳輸層加熱盤熱退火………………………………………63 4-3-2電動傳輸層微波加熱熱退火………………………………………65 4-3-3 電動傳輸層熱退火方式比較及量測分析………………………68 4-3-4 PET基板之高效益有機太陽能電池………………………………72 Chapter 5 結論………………………………………………………………77 Reference…………………………………………………………………………78

    [1]. 張正華等人編著, 馬振基校定, “Organic Solar Cells and Plastics Solar Cells” 五南出版社, (2007).
    [2]. D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power.” J. Appl. Phys. 25, 676 (1954).
    [3]. J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
    [4]. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671 (1976).
    [5]. K. Sriprapa and P. Sichanugrist, "High efficiency amorphous/microcrystalline silicon solar cell fabricated on metal substrate," Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on Volume 3, Page(s):2799 - 2800 (2003).
    [6]. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason, and R. Noufi, “Properties of 19.2% efficiency ZnO/CdS/Ce2 thin-film solar cells,” Prog. Photovolt.: Res. Appl. 7, 311 (1999).
    [7]. The website of Nanosolar company, http://www.nanosolar.com.
    [8]. R. McConnell, S. Kurtz, and M. Symko-Davies, “Concentrator Photovoltaic Technologies,” Refocus. July/August (2005).
    [9]. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
    [10]. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986).
    [11]. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large sizelow cost photodetectors with excellent visible-ultraviolet s ensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
    [12]. J. Nelson, “Organic photovoltaic films,” Curr. Opin. Solid State Mater. Sci. 6, 87 (2002).
    [13]. G. Yu, A.J. Heeger, J. Appl. Phys. 78 (1995) 4510.
    [14]. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes,Nature 376 (1995) 498.
    [15]. Kyungkon Kim, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics” Appl. Phys. Lett. 90, 163511 (2007).
    [16]. B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737 (1991).
    [17]. The website of “Research Institute of Innovative Technology for the Earth, RITE” (http://www.rite.or.jp/).
    [18]. 陳婉如, “有機太陽電池技術開發與實用化進展” 光連雙月刊56期, 頁數:24頁-27頁 (2005.3).
    [19]. Holger Spanggaard, Frederik C. Krebs, “A brief history of the development of organic and polymeric photovoltaics” ,Solar Energy Materials & Solar Cells 83 (2004) 125–146.
    [20]. Bülent M. Basol, Vijay K. Kapur, “Flexible and light weight copper indium diselenide solar cells on polyimide substrates” , Solar Energy Materials & Solar Cells 43 (1996) 93-98.
    [21]. C. J. Brabec, F. Pandinger, “Realization of Large Area Flexible Fullerene- Conjugate Polymer Photocells: A Route to Plastic Solar Cell ” ,Synthetic Metals 102 (1999) 861-864.
    [22]. M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, Appl. Phys. Lett. 85, 1481 (2004).
    [23]. T. Miyasaka and Y. Kijitori, J. Electrochem. Soc. 151, A1767 (2004).
    [24]. Seigo Ito, Ngoc-Le Cevey Ha, Guido Rothenberger, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline -TiO2 photoanode” , Chem. Commun.(2006), 4004–4006.
    [25]. Ajay K. Pandey, Jean-Michel Nunzi, “Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells” ,Appl. Phys. Lett. 89, 213506 (2006).
    [26]. M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene):Fullerene” ,Appl. Phys. Lett. 86, 201120 (2005).
    [27]. Gang Li, Vishal Shrotrriya, Yang Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nature materials VOL 4 NOVEMBER (2005).
    [28]. W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. Milliron, and A. P. Alivisatos , K. W. J. Barnham, “Charge Transport in Hybrid Nanorod-Polymer Composite Photovoltaic Cells,” Phys. Rev. B 67, 115326 (2003).
    [29]. 莊嘉琛, “太陽能工程–太陽電池篇” 金華科技圖書股份有限公司 民86.
    [30]. Harald Hoppe, Niyazi Serdar Sariciftci, “Organic solar cells: An overview” ,J. Mater. Res., Vol. 19, No. 7 (2004).
    [31]. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x” ,J. Chem. Soc., Chem. Commun. 578 (1977).
    [32]. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, “Molecular level alignment at organic semiconductor-metal interfaces” ,Appl. Phys. Lett. 73, 662 (1998).
    [33]. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces” ,Adv. Mater. 11, 605 (1999).
    [34]. I. G. Hill, A. J. Makinen, and Z. H. Kafafi, “Initial stages of metal/organic semiconductor interface formation,” J. Appl. Phys. 88, 889 (2000).
    [35]. S. Karg, M. Meier, and W. Riess, “Light-emitting diodes based on poly-p-phenylene-vinylene: I. Charge-carrier injection and transport” ,J. Appl. Phys. 82, 1951 (1997).
    [36]. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
    [37]. N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford, New York, (1940).
    [38]. J. Frenkel, “On pre-breakdown phenomena in insulators and electric semiconductors” ,Phys. Rev. 54, 647 (1938).
    [39]. D. M. Pai, “Transient photoconductivity in poly(N-vinylcarbazole)” ,J. Chem. Phys. 52, 2285 (1970).
    [40]. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene)” ,Phys. Rev. B 55, 656 (1997).
    [41]. J. S. Kim, R. H. Friend, and F. Cacialli, Appl. Phys. Lett. VOLUME 74, NUMBER 21.
    [42]. X. M. Ding L. M. Hung, L. F. Cheng, Z. B. Deng, X. Y. Hou, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. VOLUME 76, NUMBER 19.
    [43]. Beeling Low, Furong Zhu, Keran Zhang, and Soojin Chua, Appl. Phys. Lett. VOLUME 80, NUMBER 24.
    [44]. H. Sirringhaus, P. J. B rown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high- mobility conjugated polymers,” Nature, 401, 685 (1999).
    [45]. Vishal Shrotriya, Jianyong Ouyang, Ricky J. Tseng, Gang Li, Yang Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films” ,Chemical Physics Letters 411 (2005) 138–143.
    [46]. Chu-Jung Ko, Yi-Kai Lin, Fang-Chung Chen, “Microwave Annealing of Polymer Photovoltaic Devices” ,Adv. Mater. (2007), 19, 3520–3523.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE