研究生: |
蕭暐翰 Hsiao, Wei-Han |
---|---|
論文名稱: |
以胺基酸鹽類混搭醇胺類配方開發長時間捕獲二氧化碳吸收劑 Carbon Dioxide Capture by Blended Alkanolamines and Amine-Based Amino Acid Salt as Long-Term Absorbents |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
蔣本基
Chiang, Pen-Chi 王竹方 Wang, Chu-Fang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 二氧化碳捕獲 、超重力旋轉床 、胺基酸鹽 、腐蝕 |
外文關鍵詞: | CO2 capture, Rotating Packed Bed, amino acid salt, corrosion |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胺基酸鹽被認為為目前二氧化碳捕獲非常具有潛力的新型吸收劑之一,其具有良好的反應性、低蒸氣壓、熱穩定性、低氧氣劣化性、低腐蝕性、環境友善及生物可分解性等優秀的性質,因此本研究將胺基酸鹽混搭醇胺類吸收劑,研究不同混搭配方之吸收劑性質,並以超重力旋轉床(Rotating Packed Bed, RPB)吸收串聯及再生技術,提升CO2捕獲量及氣體處理量,並降低再生能耗,將所開發出能長時間循環操作的吸收劑套入製程中,使吸收劑能更有效的捕獲CO2。
本研究探討的吸收劑醇胺類主要為二次乙亞胺(Piperazine, PZ)、二乙烯三胺(Diethylenetriamine, DETA)及乙醇胺(Monoethanolamine, MEA);胺基酸鹽類經篩選後以乙二胺基乙磺酸鈉(2-[(2-Aminoethyl)amino]ethanesulfonate, Na ADS)為研究重點,批次吸收實驗結果顯示,PZ/Na ADS(15/25 wt%)的配方有不錯的吸收表現,Rich Loading可以達到0.83,一大氣壓再生Lean Loading降至0.61,再生效率為26.5%較PZ/DETA/Na ADS(15/15/10 wt%)高出5.45%,相對於傳統醇胺類的配方,由於胺基酸鹽類能與二氧化碳反應的基團除了胺基外,酸基也能與二氧化碳反應,因此二氧化碳吸收量上升。而RPB吸收實驗結果顯示只提升Na ADS的含量不會使捕獲效率變高,反而會有下降的趨勢,主因為黏度上升;另一個因素為水,水扮演可以與胺吸收劑提前反應的角色。
由腐蝕性質測試實驗中PZ/Na ADS(15/25 wt%)腐蝕力較PZ/DETA/Na ADS(15/15/10 wt%) Rich Loading下降了49.5%,而Lean Loading更較PZ/DETA/Na ADS(15/15/10 wt%) 下降了81.8%。原因除了因為Na ADS的磺酸根能有效降低腐蝕力以外,Na ADS在吸收二氧化碳時形成Bicarbonate,Bicarbonate會與鐵形成一層成份為FeCO3預鈍化層(Prepassive Film),與醇胺類吸收劑之腐蝕機制相比腐蝕力較低,由腐蝕浸沒實驗中,分析吸收劑中的鐵離子含量也可以得到相似的結果。
RPB吸收串聯與再生連續操作實驗結果顯示PZ/Na ADS(15/25 wt%)於吸收劑損失及再生性質部分有良好的表現,捕獲量雖較PZ/DETA/Na ADS(15/15/10 wt%)下降了6.3%,但再生效率高於PZ/DETA/Na ADS(15/15/10 wt%)11.7%。而吸收RPB串聯與再生連續操作對比單一RPB與再生連續操作比較,所有配方的捕獲效率因為Lean Loading值上升,捕獲效率下降了5~10%,但整體捕獲量因為氣體處理量上升而有顯著的提升,進而增加了Rich Loading的值,降低了能耗。
綜合各吸收劑配方吸收效果、再生能耗、腐蝕力及氧氣溶解度之比較,本研究所提出PZ/Na ADS(15/25 wt%)於RPB吸收串聯與再生長時間連續操作製程中實為一具有發展潛力之吸收劑。
Amino acid salts are considered to be one of the most promising new absorbers for carbon dioxide capture, which has good reactivity, low vapor pressure, thermal stability, low oxygen deterioration, low corrosivity, environment-friendly and biodegradable and other excellent properties, so this study discusses the performance of different formula including amino acid salt blended with alcohol amine as absorbent, and to apply formula to high gravity rotating bed (Rotating Packed Bed, RPB) absorption in series and regeneration technology, which aims to enhance CO2 capture amounts, gas handling, and to reduce the energy consumption.
In this study, the alcohol amine were mainly Piperazine (PZ), Diethylenetriamine (DETA) and Monoethanolamine (MEA). The amino acid salts were screened with 2 - [Aminoethyl] amino] ethanesulfonate (Na ADS).In batch system the results showed that PZ / Na ADS (15/25 wt%) had a good absorption Performance, Rich Loading can reach to 0.83, an atmospheric pressure regeneration Lean Loading drops to 0.61, a regeneration efficiency of 26.5% is 5.45% higher than that of PZ/DETA/Na ADS (15/15/10 wt%), compared to conventional alcohol amines in addition to the amine group, the acid group can react with carbon dioxide, so the CO2 capture amounts is increased. The results of RPB absorption showed that only increasing the content of Na ADS did not make the capture efficiency higher, but there will be a downward trend, mainly due to the increase in viscosity; another factor for water, water can play an important role with amine absorbent.
The corrosion resistance of PZ/Na ADS (15/25 wt%) was 49.5% higher than that of PZ/DETA/Na ADS (15/15/10 wt%) by corrosion property test. Lean Loading is even lower than PZ/DETA/Na ADS (15/15/10 wt%) by 81.8%. In addition to the fact that Na ADS forms an alternative to iron when it react with bicarbonate, Bicarbonate will form a layer of FeCO3 pre-passivation film with iron, this pre-passivation film will prevent the mertrial from corrosion.Compared the amino acid salt corrosion mechanism to the alcohol amine, it shows lower corrosion rate. Dipping SS304 into different formula shows similar results.
In RPB+RPB abosrtion in series and RPB regeneration long term continuous operation showed that PZ/Na ADS (15/25 wt%) perform well in the absorbent loss and regeneration properties, although the CO2 capture amounts was lower than PZ/DETA/Na ADS (15/15/10% wt%) by 6.3%, but the regeneration efficiency was higher than PZ/DETA/Na ADS (15/15/10 wt%) by 11.7%. Compared with the single RPB absortion and RPB regeneration continuous operation, the capture efficiency of all the formula decreased by 5 ~ 10% because of the increase of the Lean Loading value, but the CO2 capture amounts was significant increase due to the increase of the gas treatment capacity, and the increase of the value of Rich Loading reducing energy consumption.
PZ/Na ADS (15/25 wt%), was used in the process of RPB+RPB absorption in series and RPB regeneration long term continuous operation, shows well absortion and regeneration properties, low corrosivity and low DO value, consider to be the most promising absorbent.
Ahn, S., Song, H.-J., Park, J.-W., Lee, J., Lee, I. and Jang, K.-R. (2010)." Characterization of Metal Corrosion by Aqueous Amino Acid Salts for the Capture of CO2." Korean J. Chem. Eng. 27: 1576-1580.
Aronu, U. E., Svendsen, H. F. and Hoff, K. A. (2010)." Investigation of Amine Amino Acid Salts for Carbon Dioxide Absorption." Int. J. Greenhouse Gas Control. 4: 771.
Aroonwilas A, Amornvadee V, Tontiwachwuthikul P. (1999)." Behaviour of the mass-transfer coefficient of structured packings in CO2 absorbers with chemical reactions." Ind. Eng. Chem. Res. 38: 2044–2050
Bishnoi, S. and Rochelle, G. T. (2000)." Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility." Chem. Eng. Sci. 55: 5531.
Chang, E. E., Pan, S.-Y., Chen, Y.-H., Tan, C.-S. and Chiang, P.-C. (2012)." Accelerated Carbonation of Steelmaking Slags in a High-Gravity Rotating Packed Bed." J. Hazard. Mater. 97: 227–228.
Chang, H H., Yang, CC., Li, X., Gao, WC., Wei, WL., Liu, G., Pang, XY. and Qiao. Y. (2015)." Ab initio Analysis of the Interaction of CO2 with Acetylated D-glucopyranose Derivatives." Compt. Rendus Chim. 18(9), 935-944.
Chen, J.-F., Wang, Y.-H., Guo, F., Wang, X.-M. and Zheng, C. (2000)." Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation." Ind. Eng. Chem. Res. 39: 948.
Cheng, H.-H., Lai, C.-C. and Tan, C.-S. (2013)." Thermal Regeneration of Alkanolamine Solutions in a Rotating Packed Bed." Int. J. Greenhouse Gas Control 16: 206.
Cheng, H.-H., Shen, J.-F. and Tan, C.-S. (2010)." CO2 Capture from Hot Stove Gas in Steel Making Process." Int. J. Greenhouse Gas Control 4: 525.
Cheng, H.-H. and Tan, C.-S. (2009)." Carbon Dioxide Capture by Blended Alkanolamines in Rotating Packed Bed." Energy Procedia 1: 925.
Cheng, H.-H. and Tan, C.-S. (2006)." Reduction of CO2 Concentration in a Zinc/Air Battery by Absorption in a Rotating Packed Bed." J. Power Sources 162: 1431.
Cheng, H.-H. and Tan, C.-S. (2011). "Removal of CO2 from Indoor Air by Alkanolamine in a Rotating Packed Bed." Sep. Purif. Technol. 82: 156.
Choi, Y. S., Duan, D., Nešić, S., Vitse, F., Bedell, S. A. and Worley, C. (2010)." Effect of Oxygen and Heat Stable Salts on the Corrosion of Carbon Steel in MDEA-Based CO2 Capture Process." NACE International 66: 125004.
D. H. Davies and G. T. Burstein. (1998)." Effects of Bicarbonate on the Corrosion and Passivation of Iron." National Association of Corrosion Engineers 36: 416.
Fred Closmann and Rochelle, G. T. (2011)." Degradation of aqueous methyldie thanolamine by temperature and oxygen cycling." Energy Procedia 4: 23.
Freeman, S. A., Dugas, R., Van Wagener, D., Nguyen, T. and Rochelle, G. T. (2009)." Carbon Dioxide Capture with Concentrated, Aqueous Piperazine." Energy Procedia 1: 1489.
Goff, G. S. and Rochelle, G. T. (2006)." Oxidation Inhibitors for Copper and Iron Catalyzed Degradation of Monoethanolamine in CO2 Capture Processes." Ind. Eng. Chem. Res. 45: 2513.
Gouedard, C., Picq, D., Launay, F. and Carrette, P. L. (2012)." Amine Degradation in CO2 Capture I. A Review." Int. J. Greenhouse Gas Control 10: 244.
Hart, A. and Gnanendran, N. (2009)." Cryogenic CO2 Capture in Natural Gas." Energy Procedia 1: 697.
Holst, J. v., Kersten, S. R. A. and Hogendoorn, K. J. A. (2008)." Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts." J. Chem. Eng. Data 53: 1286.
Holst, J. v., Versteeg, G. F., Brilman, D. W. F. and Hogendoorn, J. A. (2009)." Kinetic Study of with Various Amino Acid Salts in Aqueous Solution." Chem. Eng. Sci. 64: 59.
Hook, R. J. (1997)." An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds." Ind. Eng. Chem. Res. 36: 1779.
Huang, Q., Bhatnagar, S., Remias, J. E., Selegue, J. P. and Liu, K. (2013)." Thermal Degradation of Amino Acid Salts in CO2 Capture." Int. J. Greenhouse Gas Control 19: 243.
Idem, R., Wilson, M., Tontiwachwuthikul, P., Chakma, A., Veawab, A., Aroonwilas, A. and Gelowitz, D. (2006)." Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant." Ind. Eng. Chem. Res. 45: 2414.
Inna Kim, Xiaoguang Ma, Ralf Beck, Hanna Knuutila and Jens Petter Andreassen (2012)." Study of the Solid-liquid Solubility in the Piperazine-H2O-CO2 System using FBRM and PVM." Energy Procedia 23: 72.
Jassim, M. S., Rochelle, G., Eimer, D. and Ramshaw, C. (2007)." Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed." Ind. Eng. Chem. Res. 46: 2823.
Kim, N., Yoon, S. and Park, G. (2013)." Evaluating the CO2-Capturing efficacy of amine and carboxylic acid motifs: ab initio studies on thermodynamic versus kineyic properties." Tetrahedron 69: 6693-6697.
Knudsen, J. N., Jensen, J. N., Vilhelmsen, P.-J. and Biede, O. (2009)." Experience with CO2 Capture from Coal Flue Gas in Pilot-Scale: Testing of Different Amine Solvents." Energy Procedia 1: 783.
Knudsen, J.N.; Andersen, J.; Jensen, J.N. (2011). "Results from Test Campaigns at the 1 t/h CO2 PCC Pilot Plant in Esbjerg under the EU FP7 CESAR Project; IEAGHG 1st Post Combustion Capture Conference."
http://ieaghg.org/docs/General_Docs/PCCC1/Presentations/3_IEA%20PCCC1%20-%20Abu%20Dhabi%20May%202011.pdf
Ku, Y., Ji, Y.-S. and Chen, H.-W. (2008)." Ozonation of Cresol in Aqueous Solutions Using a Rotating Packed-Bed Reactor." Water Environ. Res. 80: 41.
Kuettel, D. A., Fischer, B., Hohe, S., Joh, R., Kinzl, M. and Schneider, R. (2013)." Removal of Acidic Gases and Metal Ion Contaminants with PostCapTM Technology." Energy Procedia 37: 1687.
Kumar, P. S., Hogendoorn, J. A., Feron, P. H. M. and Versteeg, G. F. (2003)." Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids." Ind. Eng. Chem. Res. 42: 2832.
Kumar, P. S., Hogendoorn, J. A., Timmer, S. J., Feron, P. H. M. and Versteeg, G. F." Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 2. Experimental VLE Data and Model." Ind. Eng. Chem. Res. 42: 2841.
Kumar, P. S., Hogendoorn, J. A., Versteeg, G. F. and Feron, P. H. M. (2003)." Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine." American Institute of Chemical Engineers. AIChE Journal 49: 203.
L Dumée, C Scholes, G Stevens, S Kentish (2012)." Purification of aqueous amine solvents used in post combustion CO2 capture: a review." Int. J. Greenhouse Gas Control 10: 443-455.
Lepaumier, H., Picq, D. and Carrette, P.-L. (2009)." New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2." Ind. Eng. Chem. Res. 48: 9061.
Liangfu Zheng, Naser S. Matin, James Landon, Gerald A. Thomas and Kunlei Liu (2016)." CO2 Loading-dependent corrosion of carbon steel and formation of corrosion products in anoxic 30 wt.% monoethanolamine-basedsolutions." Corrosion Science 102: 44.
Liao, C.-H. and Li, M.-H. (2002)." Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine+N-methyldiethanolamine." Chem. Eng. Sci. 57: 4569.
Lin, C.-C., Ho, T.-J. and Liu, W.-T. (2002)." Distillation in a Rotating Packed Bed." J. Chem. Eng. Jpn. 35: 1298.
Lin, C.-C. and Liu, W.-T. (2003)." Ozone Oxidation in a Rotating Packed Bed." J. Chem. Technol. Biotechnol. 78: 138.
Lin, C.-C., Liu, W.-T. and Tan, C.-S. (2003)." Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed." Ind. Eng. Chem. Res. 42: 2381.
Lin, C. C. and Liu, W. T. (2007)." Mass Transfer Characteristics of a High-voidage Rotating Packed Bed." J. Ind. Eng. Chem. 13: 71.
Lin, C. C. and Liu, W. T. (2006)." Removal of an Undesired Component froma Valuable Product Using a Rotating Packed Bed." J. Ind. Eng. Chem. 12: 455.
Liu, A. H., Ma, R., Song, C., Yang, Z. Z., Yu, A., Cai, Y, He, L. N., Zhao, Y. N., Yu, B. and Song, Q. W. (2012)." Equimolar CO2 Capture by N-substituted amino acid salts and aubsequent conversion." Angew. Chem., Int. Ed. 51: 11306-11310.
Majchrowicz, M. E. (2014)." Amino Acid Salt Solutions for Carbon Dioxide Capture." GildePrint.
Majchrowicz, M. E., Brilman, D. W. F. and Groeneveld, M. J. (2009)." Precipitation Regime for Selected Amino Acid Salts for CO2 Capture from flue Gases." Energy Procedia 1: 979.
Mertens, J., Lepaumier, H., Desagher, D. and Thielens, M.-L. (2013)." Understanding Ethanolamine (MEA) and Ammonia Emissions from Amine Based Post Combustion Carbon Capture: Lessons Learned from Field Tests." Int. J. Greenhouse Gas Control 13: 72.
Moon, S.-H. and Shim, J.-W. (2006)." A Novel Process for CO2/CH4 Gas Separation on Activated Carbon Fibers—Electric Swing Adsorption." J. Colloid Interface Sci. 298: 523.
Mumford, K. A., Smith, K. H., Anderson, C. J., Shen, S., Tao, W. Suryaputradinata, Y. A., Qader, A., Hooper, B., Innocenzi, R. A., Kentish, S. E. and Stevens, G. W. (2011)." Post-combustion Capture of CO2: Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent." Energy & Fuels 26: 138.
Mumford, K. A., Smith, K. H., Anderson, C. J., Shen, S., Tao, W., Suryaputradinata, Y. A., Quyn, D. M., Qader, A., Hooper, B., Innocenzi, R. A., Kentish, S. E. and Stevens, G. W. (2012)." Post-Combustion Capture of CO2: Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent." Energy and Fuels 26: 6449.
Nascimento, J., Ravagnani, T. and Pereira, J. (2009)." Experimental Study of a Rotating Packed Bed Distillation Column." Braz. J. Chem. Eng. 26: 219.
Olajire, A. A. (2010)." CO2 Capture and Separation Technologies for End-of-Pipe Applications – A Review." Energy 35: 2610.
Pan, S.-Y., Chiang, P.-C., Chen, Y.-H., Tan, C.-S. and Chang, E. E." Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed." Environ. Sci. Technol. 47: 3308.
Portugal, A. F., Derks, P. W. J., Versteeg, G. F., Magalhães, F. D. and Mendes, A. (2007)." Characterization of Potassium Glycinate for Carbon Dioxide Absorption Purposes." Chem. Eng. Sci. 62: 6534.
Rahim, N. A., Ghasem, N. and Al-Marzouqi, M. (2015)." Absorption of CO2 from Natural Gas Using Different Amino Acid Salt Solutions and Regeneration Using Hollow Fiber Membrane Contactors." J. Nat. Gas Sci. Eng. 26: 108.
Rinker, E. B., Sami, S. A. and Sandall, O. C. (1995)." Kinetics and Modelling of Carbon Dioxide Absorption into Aqueous Solutions of N-methyldiethanolamine." Chem. Eng. Sci. 50: 755.
Rochelle, G. T. (2009)." Amine Scrubbing for CO2 Capture." Science 325: 1652.
Rooney, P. C. and Daniels, D. D. (1998)." Oxygen Solubility in Various Alkanolamine/Water Mixtures." Petroleum Technology Quarterly 97.
Sanchez-Fernandez, E., Mercader, F. d. M., Misiak, K., van der Ham, L., Linders, M. and Goetheer, E. (2013)." New Process Concepts for CO2 Capture Based on Precipitating Amino Acids." Energy Procedia 37: 1160.
Simons, K., Nijmeijer, K., Mengers, H., Brilman, W. and Wessling, M. (2010)." Highly Selective Amino Acid Salt Solutions as Absorption Liquid for CO2 Capture in Gas-Liquid Membrane Contactors." ChemSusChem 3: 939.
Singh, P., van Swaaij, W. P. M. and Brilman, D. W. F. (2011)." Kinetics Study of Carbon Dioxide Absorption in Aqueous Solutions of 1,6-hexamethyldiamine (HMDA) and 1,6-hexamethyldiamine, N,N′di-methyl (HMDA, N,N′)." Chem. Eng. Sci. 66: 4521.
Tan, C.-S. and Chen, J.-E. (2006)." Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed." Separation and Purification Technology 49: 174.
Terrence L. Donaldson and Yen N. Nguyen (1980)." Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes." J. Ind. Eng. Chem. 19: 260-266.
Wang, G. Q., Xu, O. G., Xu, Z. C. and Ji, J. B. (2008)." New HIGEE-Rotating Zigzag Bed and Its Mass Transfer Performance." Industrial & Engineering Chemistry Research 47: 8840.
Wang, M., Zou, H. K., Shao, L. and Chen, J. F." Controlling Factors and Mechanism of Preparing Needlelike CaCO3 under High Gravity Environment." Powder Technology 142: 166.
Wang, T. and Jens, K.-J. (2012)." Oxidative Degradation of Aqueous 2-Amino-2-methyl-1-propanol Solvent for Postcombustion CO2 Capture." Ind. Eng. Chem. Res. 51: 6529.
Wei, C.-C., Puxty, G. and Feron, P. (2014)." Amino Acid Salts for CO2 Capture at Flue Gas Temperatures." Chem. Eng. Sci. 107: 218.
Wei, S. C.-C., Puxty, G. and Feron, P. (2013)." Amino Acid Salts for CO2 Capture at Flue Gas Temperatures." Energy Procedia 37: 485.
X. -P. Guo and Y. Tomoe (1998)." Electrochemical Behavior of Carbon Steel in Carbon Dioxide-Saturated Diglycolamine Solutions." Corrosion Engineering Section 54: 931.
Xiao, J., Li, C.-W. and Li, M.-H. (2000)." Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-amino-2-methyl-1-propanol+Monoethanolamine." Chem. Eng. Sci. 55: 161.
Xu, S., Wang, Y.-W., Otto, F. D. and Mather, A. E. (1996)." Kinetics of the Reaction of Carbon Dioxide with 2-amino-2-methyl-1-propanol Solutions." Chem. Eng. Sci. 51: 841.
Yan, S.-p., Fang, M.-X., Zhang, W.-F., Wang, S.-Y., Xu, Z.-K., Luo, Z.-Y. and Cen, K.-F. (2007)." Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors without Wetting." Fuel Process. Technol. 88: 501.
Yan, S., He, Q., Zhao, S., Wang, Y. and Ai, P. (2014)." Biogas Upgrading by CO2 Removal with a Highly Selective Natural Amino Acid Salt in Gas–Liquid Membrane Contactor." Chem. Eng. Process. 85: 125.
Yan, S., He, Q., Zhao, S., Zhai, H., Cao, M. and Ai, P. (2015)." CO2 Removal from Biogas by Using Green Amino Acid Salts: Performance Evaluation." Fuel Process. Technol. 129: 203.
Yang, N., Xu, D.-Y., Wei, C.-C., Puxty, G., Yu, H., Maeder, M., Norman, S. and Feron, P. (2014)." Protonation Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures." Ind. Eng. Chem. Res. 53: 12848.
Yong, K.J.J., Stevens, G.W., Caruso, F. and Kentish, S.E. (2015)." The Use of Carbonic Anhydrase to Accelerate Carbon Dioxide Capture Processes." J. Chem. Technol. Biotechnol. 90(1): 3-10.
Yu, C.-H., Cheng, H.-H. and Tan, C.-S. (2012)." CO2 Capture by Alkanolamine Solutions Containing Diethylenetriamine and Piperazine in a Rotating Packed Bed." Int. J. Greenhouse Gas Control 9: 136.
Yu, C.-H., Huang, C.-H. and Tan, C.-S. (2012)." A Review of CO2 Capture by Absorption and Adsorption." Aerosol and Air Quality Research 12: 745.
Yu, C.-H., Lin, Y.-X. and Tan, C.-S. (2014)." Effects of Inorganic Salts on Absorption of CO2 and O2 for Absorbents Containing Diethylenetriamine and Piperazine." Int. J. Greenhouse Gas Control 30: 118.
Yu, C.-H. and Tan, C.-S. (2014)." CO2 Capture by Aqueous Solution Containing Mixed Alkanolamines and Diethylene Glycol in a Rotating Packed Bed." Energy Procedia 63: 758.
Yu, C.-H. and Tan, C.-S. (2013)." Mixed Alkanolamines with Low Regeneration Energy for CO2 Capture in a Rotating Packed Bed." Energy Procedia 37: 455.
Yu, C.-H., Wu, T.-W. and Tan, C.-S. (2013)." CO2 Capture by Piperazine Mixed with Non-Aqueous Solvent Diethylene Glycol in a Rotating Packed Bed." Int. J. Greenhouse Gas Control 19: 503.
陳顥 (2016). "以胺基酸鹽吸收劑配方捕獲燃煤電廠排氣中之二氧化碳" 國立清華大學化學工程研究所碩士論文