研究生: |
沈廷威 Shen, Ting-Wei |
---|---|
論文名稱: |
設計與實現性能提升之CMOS-MEMS熱電式紅外線感測器 Design and Implementation of Performance Enhancement CMOS-MEMS Thermoelectric Infrared Sensor |
指導教授: |
方維倫
Fang, Wei-Leun |
口試委員: |
李昇憲
Li, Sheng-Shian 孫志銘 Sun, Chih-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | CMOS-MEMS 、熱電式紅外線感測器 、熱電效應 |
外文關鍵詞: | CMOS-MEMS, thermoelectric infrared sensor, thermopile |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以台積電CMOS 標準製程: TSMC 0.18μm 1P6M 作為實現熱電式紅外線感測器的製程平台,主要研究方向為測試此製程中熱電材料、吸收層結構及膜層堆疊之設計,在相同面積下提升元件性能。材料測試方面設計Test key作為萃取熱電係數之研究方法,吸收層結構則是利用CMOS多層堆疊的特色,將特定的犧牲層利用金屬濕蝕刻移除後,形成傘狀吸收層結構,中央支撐柱與下方熱電堆之熱端連接。此吸收層結構主要能提升紅外線感測元件的吸收面積使用率,同時創造出較佳的熱傳導路徑,將吸收層所產生的熱經由支撐柱直接傳遞到熱電堆中央,有效增加熱端與冷端間的溫差。下方的熱電偶結構設計參照實驗室過去所開發的經驗,並以此概念設計一無吸收層結構之感測元件作為對照組,使其與具有吸收層結構之元件在尺寸及雜訊大小皆相同,以驗證設計是否成功被實現。研究過程中透過理論公式計算、ANSYS模擬軟體進行相關模擬,得到預期之響應度、雜訊等效功率及檢出比等規格。晶片經由後製程完成後,進行各項性能的量測,驗證所提出的設計概念成功被達成,完整實現CMOS MEMS熱電式紅外線感測器的研究。
This study presents the CMOS MEMS thermoelectric infrared sensor using TSMC 0.18μm 1P6M standard CMOS process. There are two major objectives. One of them is to test the thermoelectric material in this standard CMOS process by the test-key design, and the other one is to improve thermoelectric infrared sensor by geometry design without changing the footprint size. We design the umbrella-like heat transduction absorber which providing a better heat-flow path, and enhancing absorption area/efficiency of infrared to improve the thermoelectric infrared sensor by means of 1P6M multi-layer stacking. Thus, temperature difference between hot and cold junctions is increased, and the performance of IR sensor is significantly improved. The serpentine thermocouples below the absorber in the proposed design was implemented by our team, and this serpentine thermocouples without umbrella-like absorber which possessed the same sensing material, element size and noise level is regarded as the reference design in this study. Then, we use theoretical analysis and the ANSYS software to verify our design concept. After we completed the fabrication process, we measure the material property and the functions of thermoelectric infrared sensor. The result indicate that we can achieve our goal, and implement the research of CMOS MEMS thermoelectric infrared sensor.
[1] R. P. Feynman, “There's plenty of room at the bottom,” Journal of Microelectromechanical Systems, vol. 1, pp. 60-66, 1992.
[2] Nintendo, http://www.nintendo.com/
[3] Yole Développement, http://www.yole.fr/
[4] Texas Instruments, Inc., http://www.ti.com
[5] FLIR, http://www.flir.com.hk/home/
[6] FIBARO, http://www.flh.com.tw/index.php/
[7] Melexis Microelectronic integrated systems, http:// www.melexis.com
[8] Wikipedia, https://en.wikipedia.org/wiki/Infrared/
[9] A. Rogalski, "Infrared detectors: status and trends," Progress in quantum electronics, vol.27, 2003, pp. 59-210.
[10] A. Daniels, "Field Guide to Infrared Systems, Detectors, and FPAs." SPIE, 2010.
[11] S. A. Kuznetsov, A. G. Paulish, M. Navarro-Cia, A. V. Arzhannikov, “ Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers.” Scientific Reports, 2016.
[12] S. Eminoglu, M. Y. Tanrikulu and T. Akin, “A Low-Cost 128 x 128 Uncooled Infrared Detector Array in CMOS Process,” Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 20-30, Feb. 2008.
[13] F. Forsberg, A. Lapadatu, G. Kittilsland, S. Martinsen, N. Roxhed, A.C. Fischer, G. Stemme, B. Samel, P. Ericsson, N. Hoivik, T. Bakke, M. Bring, T. Kvisteroy, A. Ror, F. Niklaus, “CMOS-Integrated Si/SiGe Quantum-Well Infrared Microbolometer Focal Plane Arrays Manufactured With Very Large-Scale Heterogeneous 3-D Integration,” IEEE Journal of Selected Topics in Quantum Electronics, vol.21, 2700111, 2015.
[14] D. Xu, B. Xiong, and Y. Wang,” Self-aligned thermoelectric infrared sensors with post-CMOS micromachining,” IEEE Electron Device Letters, vol.31, pp. 512-514, 2010.
[15] D. Xu and B. Xiong and Y. Wang, “Design, fabrication and characterization of a front-etched micromachined thermopile for IR detection”, Journal of Micromechanics and Microengineering, vol. 20, no. 11, 115004, 2010
[16] A.W. Van Herwaarden, and P. M. Sarro. "Thermal sensors based on the Seebeck effect." Sensors and Actuators, vol.10, pp. 321-346, 1986.
[17] M. C. Foote, "Temperature stabilization requirements for unchopped thermal detectors." AeroSense'99. International Society for Optics and Photonics, 1999.
[18] H. Masaki, Y. Ohta, and Y. Fukuyama, "Low-cost thermos-electric infrared FPAs and their automotive applications." SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008.
[19] Omron, http://www.omron.com/
[20] M. Muller, W. Budde, R. Gottfried, A. Hubel, R. Jahne, and H. Kuck, ”A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor,” Proc. 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, June, 1995, pp. 640-643.
[21] P. M. Sarro, “Integrated silicon thermopile infrared detectors”, PhD Thesis, Delft Technical University, 1987.
[22] E Socher, O Bochobza-Degani, and Y Nemirovsky,”A novel spiral CMOS compatible micromachined thermoelectric IR microsensor,” J. Micromech. Microeng., vol.11, pp. 574-576, 2001.
[23] H. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, ”CMOS-based thermopiles using vertically integrated double polycrystalline silicon layers,” IEEE 26th International Conference on Micro Electro Mechanical Systems, Taipei, Taiwan, Jan., 2013, pp. 429-432.
[24] J. Tanaka, M. Shiozaki, F. Aita, T. Seki, and M. Oba, ”Thermopile infrared array sensor for human detector application,” IEEE 27th International Conference on Micro Electro Mechanical Systems, San Francisco, CA,Jan., 2014, pp. 1213-1216.
[25] K.C. Chang, Y. C. Lee, C. M. Sun and W. Fang, "Novel absorber membrane and thermocouple designs for CMOS-MEMS thermoelectric infrared sensor," 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, Jan, 2017, pp. 1228-1231.
[26] 張凱傑, “CMOS-MEMS熱電式紅外線感測器設計與實現,” 清華大學碩士論文, 2016
[27] H. Zhou, P. Kropelnicki and C. Lee, “CMOS Compatible Midinfrared Wavelength-Selective Thermopile for High Temperature Applications,” Journal of Microelectromechanical Systems, vol. 24, no. 1, pp. 144-154, Feb. 2015.
[28] M. J. Modarres-Zadeh, and R. Abdolvand,” High-responsivity thermoelectric infrared detectors with stand-alone sub-micrometer polysilicon wires,” Journal of Micromech. Microeng., vol.24, 125013, 2014.
[29] C. N. Chen, “Temperature error analysis and parameter extraction of an 8–14um thermopile with a wavelength-independent absorber for tympanic thermometer,” IEEE sensors Journal, vol.11, pp. 2310-2317, 2011.
[30] C. N. Chen, W. C. Huang, C. C. Chen and S. H. Shen, “A novel CMOS-compatible polysilicon/titanium thermopile,” IEEE International Conference on Nano/Molecular Medicine and Engineering, pp. 158-163, 2009.
[31] D. Xu, B. Xiong, Y. Wang and T. Li, “Robust Array-Composite Micromachined Thermopile IR Detector by CMOS Technology,” IEEE Electron Device Letters, vol. 32, no. 12, pp. 1761-1763, 2011.
[32] M. Ohira, Y. Koyama, F. Aita, S. Sasaki and M. Oba "Micro mirror arrays for improved sensitivity of thermopile infrared sensors," IEEE International Conference on Micro Electro Mechanical Systems, pp. 708-711, 2011.
[33] J. Tanaka, H. Imamoto, T. Seki and M. Oba, "Low power wireless human detector utilizing thermopile infrared array sensor," IEEE SENSORS 2014 Proceedings, Valencia, pp. 462-465, 2014.
[34] D. Xu, E. Jing, B. Xiong and Y. Wang, "Wafer-Level Vacuum Packaging of Micromachined Thermoelectric IR Sensors," IEEE Transactions on Advanced Packaging, vol. 33, no. 4, pp. 904-911, Nov. 2010.
[35] D. Xu, B. Xiong and Y. Wang, "Micromachined Thermopile IR Detector Module With High Performance," IEEE Photonics Technology Letters, vol. 23, no. 3, pp. 149-151, Feb.1, 2011.
[36] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems, vol.2, Weinheim, Germany, John Wiley&SonsInc, 2005.
[37] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter, ” Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” Int. Electron Devices Meeting, Washington, DC, Dec., 1995.
[38] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors Conf., Irvine, CA, Oct., 2005, pp. 125-128.
[39] M. J. de Oliveira, Equilibrium Thermodynamics. 2nd Ed., Berlin Heidelberg, Springer, 2017.
[40] L. A. Klein, Millimeter Wave and Infrared Multisensor Design and Signal Processing. Artech House, Inc., 1997.
[41] J. Schieferdecker, R. Quad, E. Holzenkämpfer, and M. Schulze, "Infrared thermopile sensors with high sensitivity and very low temperature coefficient." Sensors and Actuators A: Physical, vol. 47, pp. 422-427, 1995.
[42] T. Geballe and G. Hull, "Seebeck effect in silicon," Physical Review, vol.98, no. 4, pp. 940-947, 1955.
[43] Z. Dughaish, "Lead telluride as a thermoelectric material for thermoelectric power generation," Physica B, vol. 322, pp. 205-223, 2002.
[44] http:// / thermoelectrics.matsci.northwestern.edu
[45] H. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, ”Development of a thermopile infrared sensor using stacked double polycrystalline silicon layers based on the CMOS process,” Journal of Micromech. Microeng., vol.23, 065026, 2013.
[46] C. H. Du, C. Lee, “Optimization criteria of CMOS compatible thermopile sensors,” SPIE, 3893, 0277–786.
[47] 蔡明翰, “利用金屬濕蝕刻後製程於新型CMOS-MEMS三軸加速度計之開發,” 清華大學博士論文, 2011.
[48] S. Y. Tu, W. C. Lai and W. Fang, "Vertical integration of capacitive and piezo-resistive sensing units to enlarge the sensing range of CMOS-MEMS tactile sensor," IEEE International Conference on Micro Electro Mechanical Systems, pp. 1048-1051, 2017.
[49] V. Rajaram, Z. Qian, S. Kang, S. D. Calisgan, N. E. McGruer and M. Rinaldi, "Zero-Power Electrically Tunable Micromechanical Photoswitches," IEEE Sensors Journal, pp.1-1, 2018
[50] V. Rajaram, Z. Qian, S. Kang, N. E. McGruer and M. Rinaldi, "MEMS-based near-zero power infrared wireless sensor node," IEEE International Conference on Micro Electro Mechanical Systems, pp. 17-20, 2018
[51] S. Ogawa, D. Fujisawa, and M. Kimata, “Theoretical investigation of all-metal-based mushroom plasmonic metamaterial absorbers at infrared wavelengths”, Optical Engineering, 54(12), 127104, 2015.
[52] S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers”, Applied Physics Letters, 106, 041105, 2015.
[53] G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies”, Optics express, vol.20, pp. 17503-17508, 2012.
[54] Y. C. Sun, K. C. Liang, C. L. Cheng, M. Y. Lin, R. s. Chen and W. Fang, "Performance improvement of CMOS-MEMS Pirani vacuum gauge with hollow heater design," Transducers -International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1069-1072, 2015.
[55] S. C. Chen, V. P. J. Chung, D. J. Yao and W. Fang, "Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application," Transducers -International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1453-1454, 2017.
[56] C. M. Sun, C. Wang, M. H. Tsai, H. S. Hsieh and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” Journal of Micromech. Microeng., vol.19, 015023, 2009.