研究生: |
張俊翔 Chang, Chun-Hsiang |
---|---|
論文名稱: |
髓質免疫抑制細胞於硼中子捕獲治療中的角色:追蹤指標與潛在的治療標靶 The Role of Myeloid-Derived Suppressor Cells (MDSCs) in Boron Neutron Capture Therapy (BNCT): Prognostic Indicators and Potential Therapeutic Targets |
指導教授: |
江啟勳
Chiang, Chi-Shiun |
口試委員: |
王令瑋
Wang, Ling-Wei 謝承恩 Hsieh, Cheng-En 陳芳馨 Chen, Fang-Hsin 蔡惠予 Tsai, Hui-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 硼中子捕獲治療 、髓質免疫抑制細胞 、頭頸癌 、惡性腦癌 |
外文關鍵詞: | BNCT, MDSCs, HNC, Brain tumor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼中子捕獲治療(boron neutron capture therapy,BNCT) 是一用於治療癌症的粒子治療,具有高度的選擇性以及高效率殺傷能力,因此在有效殺死腫瘤細胞的同時,可同時有效減少對正常組織的損傷。在臺灣,硼中子捕獲治療作為恩慈療法對復發頭頸癌患者或是末期惡性腦癌患者進行治療,以延長患者壽命與改進病人生活品質已獲得很好的成果。臨床上,復發頭頸癌患者於硼中子捕獲治療後,復發狀況並非罕見,因此需要一個更新穎療法以增加腫瘤控制率。末期腦癌患者則是僅有一半的患者對於硼中子捕獲治療具有較好的治療效益,因此需要一新指標於治療前協助患者評估硼中子捕獲治療是否具有顯著的治療效益。髓質免疫制細胞(myeloid-derived suppressor cells,MDSCs) 是一異質細胞族群,主要由兩個亞群組合,分別為多核髓質免疫抑制細胞(polymorphonuclear MDSCs,PMN-MDSCs)以及單核髓質免疫抑制細胞(monocytic MDSCs,M-MDSCs),其功能為抑制腫瘤微環境中之免疫反應。此研究透過一小鼠頭頸癌的臨床前模型評估硼中子捕獲治療合併標的髓質免疫抑制細胞之治療潛力,並分析臨床復發頭頸癌患者於治療前後之血液檢體中髓質免疫抑制細胞數量與腫瘤進展的關聯性。而對於惡性腦癌患者則分析治療前之各類參數,以期找出一合適的指標評估患者進行BNCT治療的效益。臨床前的動物研究顯示,硼中子捕獲治療合併標的髓質免疫抑制細胞,不僅可以有效延長癌鼠平均存活天數,同時也能夠抑制髓質免疫抑制細胞浸潤到腫瘤微環境並增加T細胞的浸潤,顯示此合併療法應用於臨床的可能性。另一方面,在臨床試驗中發現復發頭頸癌患者其循環髓質免疫抑制細胞比例與治療前以及治療後的腫瘤大小具有高度相關性,顯示髓質免疫抑制細胞可以作為此類患者於硼中子捕獲治療後治療反應的預後指標。此外在腦癌的臨床試驗中顯示硼中子捕獲治療能有效減輕末期惡性腦癌患者的腫瘤負荷、改善疾病控制並延長患者壽命,同時發現治療前的單核髓質免疫抑制細胞數量可用於評估患者進行BNCT治療效益的一合適生物指標。以上結果顯示髓質免疫抑制細胞可於腫瘤治療中作為腫瘤進展與治療標的以及用於評估硼中子捕獲治療預後之潛力。
Boron neutron capture therapy (BNCT) is a particle therapy for cancer treatment characterized by its high selectivity and destructive ability. This allows for effectively killing tumor cells while minimizing damage to surrounding healthy tissue. In Taiwan, BNCT is applied as a salvage therapy to extend patients' life of recurrent head and neck cancer or end-stage malignant brain tumors. Clinically, recurrence following BNCT is not uncommon in head and neck cancer patients, highlighting the need for novel therapies to improve tumor control rates further. For patients with end-stage brain cancer, only half respond effectively to BNCT, necessitating a reliable biomarker to evaluate the potential therapeutic benefits before treatment. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells that suppress immune responses within the tumor microenvironment. These cells primarily comprise two subpopulations: polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs). This study aimed to assess the therapeutic potential of targeting MDSCs in combination with BNCT through a mouse model of head and neck cancer. Additionally, blood samples from clinical patients with recurrent head and neck cancer were analyzed to examine the correlation between MDSCs and tumor progression before and after BNCT treatment. For end-stage brain cancer patients, various pretreatment parameters were analyzed to identify a suitable biomarker for predicting patient outcomes. The pre-clinical results demonstrated that combining BNCT with MDSCs targeting not only significantly prolonged the median survival of 4-NQO-induced oral cancer mice compared to the BNCT-alone group but also reduced MDSCs infiltration in the tumor microenvironment and increased T-cell infiltration, supporting the clinical potential of this combined therapy for head and neck cancers. The clinical study showed that the level of circulating MDSCs in recurrent head and neck cancer patients had a strong correlation with tumor size before and after treatment. In end-stage brain tumor patients, BNCT effectively reduced tumor burden, improved disease control, and prolonged survival. MDSCs could serve as a prognostic marker for evaluating therapeutic responses of BNCT in these end-stage brain tumor patients. These findings underscore the potential of MDSCs as both therapeutic targets and prognostic indicators in cancer progression, particularly in the context of BNCT.
1. Dymova, M.A., et al., Boron neutron capture therapy: Current status and future perspectives. Cancer Commun (Lond), 2020. 40(9): p. 406-421.
2. He, H., et al., The basis and advances in clinical application of boron neutron capture therapy. Radiat Oncol, 2021. 16(1): p. 216.
3. Jin, W.H., et al., A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int J Part Ther, 2022. 9(1): p. 71-82.
4. isnct.net. Accelerator-based BNCT projects. [Internet] 2024; Available from: https://isnct.net/bnct-boron-neutron-capture-therapy/accelerator-based-bnct-projects-2021/.
5. Advances in Boron Neutron Capture Therapy. 2023, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY.
6. Tung, C.J., et al., Characteristics of the new THOR epithermal neutron beam for BNCT. Appl Radiat Isot, 2004. 61(5): p. 861-4.
7. Liu, Y.W., et al., Renovation of epithermal neutron beam for BNCT at THOR. Appl Radiat Isot, 2004. 61(5): p. 1039-43.
8. Li, H.S., et al., Verification of the accuracy of BNCT treatment planning system THORplan. Appl Radiat Isot, 2009. 67(7-8 Suppl): p. S122-5.
9. Lin, T.Y. and Y.W. Liu, Development and verification of THORplan--a BNCT treatment planning system for THOR. Appl Radiat Isot, 2011. 69(12): p. 1878-81.
10. Huang, Y.S., et al., NeuTHOR Station-A Novel Integrated Platform for Monitoring BNCT Clinical Treatment, Animal and Cell Irradiation Study at THOR. Life (Basel), 2023. 13(3).
11. Wang, L.W., et al., Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Commun (Lond), 2018. 38(1): p. 37.
12. Wang, L.W., et al., Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase I/II clinical trial at Tsing Hua Open-Pool Reactor. Appl Radiat Isot, 2014. 88: p. 23-7.
13. Wang, L.W., et al., Boron Neutron Capture Therapy Followed by Image-Guided Intensity-Modulated Radiotherapy for Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial. Cancers (Basel), 2023. 15(10).
14. Lan, T.L., et al., Using salvage Boron Neutron Capture Therapy (BNCT) for recurrent malignant brain tumors in Taiwan. Appl Radiat Isot, 2020. 160: p. 109105.
15. Chen, Y.W., et al., Salvage Boron Neutron Capture Therapy for Malignant Brain Tumor Patients in Compliance with Emergency and Compassionate Use: Evaluation of 34 Cases in Taiwan. Biology (Basel), 2021. 10(4).
16. Lan, T.L., et al., Advances in Boron Neutron Capture Therapy (BNCT) for Recurrent Intracranial Meningioma. Int J Mol Sci, 2023. 24(5).
17. Barth, R.F., N. Gupta, and S. Kawabata, Evaluation of sodium borocaptate (BSH) and boronophenylalanine (BPA) as boron delivery agents for neutron capture therapy (NCT) of cancer: an update and a guide for the future clinical evaluation of new boron delivery agents for NCT. Cancer Commun (Lond), 2024. 44(8): p. 893-909.
18. Soloway, A.H., H. Hatanaka, and M.A. Davis, Penetration of Brain and Brain Tumor. VII. Tumor-Binding Sulfhydryl Boron Compounds. Journal of Medicinal Chemistry, 1967. 10(4): p. 714-717.
19. Dai, T., et al., Nanodosimetric quantities and RBE of a clinically relevant carbon-ion beam. Med Phys, 2020. 47(2): p. 772-780.
20. Coderre, J.A., et al., Boron neutron capture therapy for glioblastoma multiforme using p-boronophenylalanine and epithermal neutrons: trial design and early clinical results. J Neurooncol, 1997. 33(1-2): p. 141-52.
21. Yu, H.T., et al., BNCT treatment planning of recurrent head-and-neck cancer using THORplan. Appl Radiat Isot, 2011. 69(12): p. 1907-10.
22. Coderre, J.A. and G.M. Morris, The radiation biology of boron neutron capture therapy. Radiat Res, 1999. 151(1): p. 1-18.
23. Lin, Y.C., et al., Similar T/N ratio between (18)F-FBPA diagnostic and BPA therapeutic dosages for boron neutron capture therapy in orthotropic tongue cancer model. Ann Nucl Med, 2020. 34(1): p. 58-64.
24. Kakino, R., et al., Comprehensive evaluation of dosimetric impact against position errors in accelerator-based BNCT under different treatment parameter settings. Med Phys, 2022. 49(8): p. 4944-4954.
25. Hashibe, M., et al., Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev, 2009. 18(2): p. 541-50.
26. Kawakita, D. and K. Matsuo, Alcohol and head and neck cancer. Cancer Metastasis Rev, 2017. 36(3): p. 425-434.
27. Chang, E.T., et al., Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China. Am J Epidemiol, 2017. 185(12): p. 1272-1280.
28. Malhotra, J., et al., Association between Cigar or Pipe Smoking and Cancer Risk in Men: A Pooled Analysis of Five Cohort Studies. Cancer Prev Res (Phila), 2017. 10(12): p. 704-709.
29. Whiteman, D.C. and L.F. Wilson, The fractions of cancer attributable to modifiable factors: A global review. Cancer Epidemiol, 2016. 44: p. 203-221.
30. de Martel, C., et al., Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer, 2017. 141(4): p. 664-670.
31. Gelwan, E., et al., Nonuniform Distribution of High-risk Human Papillomavirus in Squamous Cell Carcinomas of the Oropharynx: Rethinking the Anatomic Boundaries of Oral and Oropharyngeal Carcinoma From an Oncologic HPV Perspective. Am J Surg Pathol, 2017. 41(12): p. 1722-1728.
32. D'Souza, G., et al., Differences in the Prevalence of Human Papillomavirus (HPV) in Head and Neck Squamous Cell Cancers by Sex, Race, Anatomic Tumor Site, and HPV Detection Method. JAMA Oncol, 2017. 3(2): p. 169-177.
33. Ndiaye, C., et al., HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol, 2014. 15(12): p. 1319-31.
34. Castellsagué, X., et al., HPV Involvement in Head and Neck Cancers: Comprehensive Assessment of Biomarkers in 3680 Patients. J Natl Cancer Inst, 2016. 108(6): p. djv403.
35. Kreimer, A.R., et al., Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev, 2005. 14(2): p. 467-75.
36. Wang, P., et al., Impact of HPV status on metastatic patterns and survival in non-oropharyngeal head and neck cancer with distant metastasis. Eur Arch Otorhinolaryngol, 2022. 279(6): p. 3029-3039.
37. Bouassaly, J., et al., Rethinking treatment paradigms: Neoadjuvant therapy and de-escalation strategies in HPV-positive head and neck cancer. Crit Rev Oncol Hematol, 2024. 196: p. 104326.
38. Tumban, E., A Current Update on Human Papillomavirus-Associated Head and Neck Cancers. Viruses, 2019. 11(10).
39. Lydiatt, W.M., et al., Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin, 2017. 67(2): p. 122-137.
40. Zanoni, D.K., S.G. Patel, and J.P. Shah, Changes in the 8th Edition of the American Joint Committee on Cancer (AJCC) Staging of Head and Neck Cancer: Rationale and Implications. Curr Oncol Rep, 2019. 21(6): p. 52.
41. Bonner, J.A., et al., Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol, 2010. 11(1): p. 21-8.
42. Burtness, B., et al., Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet, 2019. 394(10212): p. 1915-1928.
43. Ferris, R.L., et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med, 2016. 375(19): p. 1856-1867.
44. Pai, S.I., D.P. Zandberg, and S.E. Strome, The role of antagonists of the PD-1:PD-L1/PD-L2 axis in head and neck cancer treatment. Oral Oncol, 2016. 61: p. 152-8.
45. Kim, C.G., et al., A Phase II Open-Label Randomized Clinical Trial of Preoperative Durvalumab or Durvalumab plus Tremelimumab in Resectable Head and Neck Squamous Cell Carcinoma. Clin Cancer Res, 2024. 30(10): p. 2097-2110.
46. Parvez, A., et al., PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front Immunol, 2023. 14: p. 1296341.
47. Rwigema, J.C., et al., The impact of tumor volume and radiotherapy dose on outcome in previously irradiated recurrent squamous cell carcinoma of the head and neck treated with stereotactic body radiation therapy. Am J Clin Oncol, 2011. 34(4): p. 372-9.
48. Rudžianskas, V., et al., Reirradiation for patients with recurrence head and neck squamous cell carcinoma: a single-institution comparative study. Medicina (Kaunas), 2014. 50(2): p. 92-9.
49. Sulman, E.P., et al., IMRT reirradiation of head and neck cancer-disease control and morbidity outcomes. Int J Radiat Oncol Biol Phys, 2009. 73(2): p. 399-409.
50. Bots, W.T.C., et al., Reirradiation of head and neck cancer: Long-term disease control and toxicity. Head Neck, 2017. 39(6): p. 1122-1130.
51. Zwicker, F., et al., Reirradiation with intensity-modulated radiotherapy in recurrent head and neck cancer. Head Neck, 2011. 33(12): p. 1695-702.
52. Ahlawat, P., et al., Reirradiation with IMRT for recurrent head and neck cancer: A single-institutional report on disease control, survival, and toxicity. Rep Pract Oncol Radiother, 2017. 22(4): p. 331-339.
53. Woollard, J.E., et al., Development and calculation of an energy dependent normal brain tissue neutron RBE for evaluating neutron fields for BNCT. Health Phys, 2001. 80(6): p. 583-9.
54. Kankaanranta, L., et al., Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int J Radiat Oncol Biol Phys, 2012. 82(1): p. e67-75.
55. Stashenko, P., et al., The Oral Mouse Microbiome Promotes Tumorigenesis in Oral Squamous Cell Carcinoma. mSystems, 2019. 4(4).
56. Louis, D.N., et al., The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol, 2021. 23(8): p. 1231-1251.
57. Ostrom, Q.T., et al., CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol, 2013. 15 Suppl 2(Suppl 2): p. ii1-56.
58. Thakkar, J.P., et al., Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev, 2014. 23(10): p. 1985-96.
59. Stupp, R., et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005. 352(10): p. 987-96.
60. Mahase, S.S., et al., Concurrent immunotherapy and re-irradiation utilizing stereotactic body radiotherapy for recurrent high-grade gliomas. Cancer Rep (Hoboken), 2023. 6(7): p. e1788.
61. Davies, A.M., U. Weinberg, and Y. Palti, Tumor treating fields: a new frontier in cancer therapy. Ann N Y Acad Sci, 2013. 1291: p. 86-95.
62. Anthony, P., S. McArdle, and M. McHugh, Tumor Treating Fields: Adjuvant Treatment for High-grade Gliomas. Semin Oncol Nurs, 2018. 34(5): p. 454-464.
63. Luo, C., et al., Tumor treating fields for high-grade gliomas. Biomed Pharmacother, 2020. 127: p. 110193.
64. Ghiaseddin, A.P., et al., Tumor Treating Fields in the Management of Patients with Malignant Gliomas. Curr Treat Options Oncol, 2020. 21(9): p. 76.
65. Goldlust, S.A., et al., Phase 1 study of concomitant tumor treating fields and temozolomide chemoradiation for newly diagnosed glioblastoma. Neurooncol Adv, 2024. 6(1): p. vdae129.
66. Cohen, M.H., et al., FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist, 2009. 14(11): p. 1131-8.
67. Song, J., et al., Effectiveness of lomustine and bevacizumab in progressive glioblastoma: a meta-analysis. Onco Targets Ther, 2018. 11: p. 3435-3439.
68. Wick, W., et al., Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med, 2017. 377(20): p. 1954-1963.
69. Li, Y., et al., Bevacizumab in Recurrent Glioma: Patterns of Treatment Failure and Implications. Brain Tumor Res Treat, 2017. 5(1): p. 1-9.
70. Miyatake, S.I., et al., Boron neutron capture therapy for malignant brain tumors. J Neurooncol, 2020. 149(1): p. 1-11.
71. Carson, K.A., et al., Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS consortium phase I and II clinical trials. J Clin Oncol, 2007. 25(18): p. 2601-6.
72. Balss, J., et al., Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol, 2008. 116(6): p. 597-602.
73. Yan, H., et al., IDH1 and IDH2 mutations in gliomas. N Engl J Med, 2009. 360(8): p. 765-73.
74. Miller, J.J., Targeting IDH-Mutant Glioma. Neurotherapeutics, 2022. 19(6): p. 1724-1732.
75. Hartmann, C., et al., Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol, 2010. 120(6): p. 707-18.
76. Verginadis, II, et al., A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol, 2022. 24(6): p. 940-953.
77. Calon, A., D.V. Tauriello, and E. Batlle, TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol, 2014. 25: p. 15-22.
78. Tcyganov, E., et al., Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol, 2018. 51: p. 76-82.
79. Gabrilovich, D.I., Myeloid-Derived Suppressor Cells. Cancer Immunol Res, 2017. 5(1): p. 3-8.
80. Younis, R.H., K.L. Han, and T.J. Webb, Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. J Immunol, 2016. 196(3): p. 1419-29.
81. Rodriguez, P.C., et al., Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res, 2009. 69(4): p. 1553-60.
82. Glover, A., Z. Zhang, and C. Shannon-Lowe, Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front Immunol, 2023. 14: p. 1161848.
83. Cassetta, L., et al., Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother, 2019. 68(4): p. 687-697.
84. Bronte, V., et al., IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol, 2003. 170(1): p. 270-8.
85. Srivastava, M.K., et al., Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res, 2010. 70(1): p. 68-77.
86. Kumar, V., et al., The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol, 2016. 37(3): p. 208-220.
87. Redd, P.S., et al., SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Res, 2017. 77(11): p. 2834-2843.
88. Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012. 12(4): p. 252-64.
89. Shen, P., et al., Increased circulating Lin(-/low) CD33(+) HLA-DR(-) myeloid-derived suppressor cells in hepatocellular carcinoma patients. Hepatol Res, 2014. 44(6): p. 639-50.
90. Yan, H.H., et al., Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res, 2010. 70(15): p. 6139-49.
91. Cao, Y., et al., BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res, 2014. 74(18): p. 5091-102.
92. Condamine, T., et al., Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med, 2015. 66: p. 97-110.
93. Luo, H., et al., The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol, 2023. 14: p. 1267918.
94. Yang, G., et al., Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget, 2017. 8(24): p. 38378-38388.
95. Solito, S., et al., A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood, 2011. 118(8): p. 2254-65.
96. Gielen, P.R., et al., Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol, 2015. 74(5): p. 390-400.
97. Ngiow, S.F., et al., Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAF(V600E) melanoma. Oncoimmunology, 2016. 5(3): p. e1089381.
98. Chen, M.F., et al., Role of ALDH1 in the prognosis of esophageal cancer and its relationship with tumor microenvironment. Mol Carcinog, 2018. 57(1): p. 78-88.
99. Wyrobnik, I., et al., Decreased melanoma CSF-1 secretion by Cannabigerol treatment reprograms regulatory myeloid cells and reduces tumor progression. Oncoimmunology, 2023. 12(1): p. 2219164.
100. Fleetwood, A.J., et al., Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol, 2007. 178(8): p. 5245-52.
101. Foucher, E.D., et al., IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. antagonistic effects of GM-CSF and IFNγ. PLoS One, 2013. 8(2): p. e56045.
102. Kheir, W.A., et al., A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages. J Cell Sci, 2005. 118(Pt 22): p. 5369-79.
103. Zwicker, F., et al., IMRT reirradiation with concurrent cetuximab immunotherapy in recurrent head and neck cancer. Strahlenther Onkol, 2011. 187(1): p. 32-8.
104. Stea, B., et al., Interstitial irradiation versus interstitial thermoradiotherapy for supratentorial malignant gliomas: a comparative survival analysis. Int J Radiat Oncol Biol Phys, 1994. 30(3): p. 591-600.
105. 陳其睿, 建立小鼠自發性頭頸癌之研究模型並評估硼中子捕獲治療與免疫治療結合之可行性, in 核子工程與科學研究所. 2019, 國立清華大學: 新竹市. p. 98.
106. Chang, C.H., et al., Targeting M-MDSCs enhances the therapeutic effect of BNCT in the 4-NQO-induced murine head and neck squamous cell carcinoma model. Front Oncol, 2023. 13: p. 1263873.
107. Chang, C.H., et al., Circulating M-MDSC Levels as an Assessment Marker for Post-Treatment Tumor Progression in Recurrent HNC Patients Following Radiation Therapy: A Case Series. J Clin Med, 2024. 13(17).
108. Chen, W.C., et al., Inflammation-induced myeloid-derived suppressor cells associated with squamous cell carcinoma of the head and neck. Head Neck, 2017. 39(2): p. 347-355.
109. Wang, L.W., et al., Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial. Int J Radiat Oncol Biol Phys, 2016. 95(1): p. 396-403.
110. Choueiry, F., et al., CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J Immunother Cancer, 2020. 8(1).
111. Lauret Marie Joseph, E., et al., Immunoregulation and Clinical Implications of ANGPT2/TIE2(+) M-MDSC Signature in Non-Small Cell Lung Cancer. Cancer Immunol Res, 2020. 8(2): p. 268-279.
112. Karakasheva, T.A., et al., CD38+ M-MDSC expansion characterizes a subset of advanced colorectal cancer patients. JCI Insight, 2018. 3(6).
113. Lopez-Bujanda, Z.A., et al., Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Nat Cancer, 2021. 2(8): p. 803-818.
114. Romano, A., et al., PMN-MDSC and arginase are increased in myeloma and may contribute to resistance to therapy. Expert Rev Mol Diagn, 2018. 18(7): p. 675-683.
115. Fu, S.Y., et al., Role of Myeloid-Derived Suppressor Cells in High-Dose-Irradiated TRAMP-C1 Tumors: A Therapeutic Target and an Index for Assessing Tumor Microenvironment. Int J Radiat Oncol Biol Phys, 2021. 109(5): p. 1547-1558.
116. Oweida, A.J., et al., STAT3 Modulation of Regulatory T Cells in Response to Radiation Therapy in Head and Neck Cancer. J Natl Cancer Inst, 2019. 111(12): p. 1339-1349.
117. Lugade, A.A., et al., Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol, 2008. 180(5): p. 3132-9.
118. Lugade, A.A., et al., Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol, 2005. 174(12): p. 7516-23.
119. Matsumura, S. and S. Demaria, Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation. Radiat Res, 2010. 173(4): p. 418-25.
120. Matsumura, S., et al., Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol, 2008. 181(5): p. 3099-107.
121. Fultang, L., et al., MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine, 2019. 47: p. 235-246.
122. Loeuillard, E., et al., Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin Invest, 2020. 130(10): p. 5380-5396.
123. Sun, R., et al., Olaparib Suppresses MDSC Recruitment via SDF1α/CXCR4 Axis to Improve the Anti-tumor Efficacy of CAR-T Cells on Breast Cancer in Mice. Mol Ther, 2021. 29(1): p. 60-74.
124. Chen, M.F., et al., Predictive Value of the Pretreatment Neutrophil-to-Lymphocyte Ratio in Head and Neck Squamous Cell Carcinoma. J Clin Med, 2018. 7(10).
125. Tao, J., et al., CD8(+) T cells exhaustion induced by myeloid-derived suppressor cells in myelodysplastic syndromes patients might be through TIM3/Gal-9 pathway. J Cell Mol Med, 2020. 24(1): p. 1046-1058.
126. Liu, M., et al., Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut, 2020. 69(2): p. 365-379.
127. Greene, S., et al., Inhibition of MDSC Trafficking with SX-682, a CXCR1/2 Inhibitor, Enhances NK-Cell Immunotherapy in Head and Neck Cancer Models. Clin Cancer Res, 2020. 26(6): p. 1420-1431.
128. Wu, L., et al., Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. Oncoimmunology, 2018. 7(4): p. e1397248.
129. Yu, G.T., et al., CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology, 2016. 5(6): p. e1151594.
130. Sluijter, M., et al., Inhibition of CSF-1R supports T-cell mediated melanoma therapy. PLoS One, 2014. 9(8): p. e104230.
131. Yang, X., et al., Lactate-Modulated Immunosuppression of Myeloid-Derived Suppressor Cells Contributes to the Radioresistance of Pancreatic Cancer. Cancer Immunol Res, 2020. 8(11): p. 1440-1451.
132. Imamichi, S., et al., Extracellular Release of HMGB1 as an Early Potential Biomarker for the Therapeutic Response in a Xenograft Model of Boron Neutron Capture Therapy. Biology (Basel), 2022. 11(3).
133. Ono, K., H. Tanaka, and M. Suzuki, Reevaluation of CBE value of BPA for hepatocytes. Appl Radiat Isot, 2020. 161: p. 109159.
134. Rossini, A.E., et al., Assessment of biological effectiveness of boron neutron capture therapy in primary and metastatic melanoma cell lines. Int J Radiat Biol, 2015. 91(1): p. 81-9.
135. Fukuda, H., et al., RBE of a thermal neutron beam and the 10B(n, alpha)7Li reaction on cultured B-16 melanoma cells. Int J Radiat Biol Relat Stud Phys Chem Med, 1987. 51(1): p. 167-75.
136. Coderre, J.A., et al., Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int J Radiat Oncol Biol Phys, 1993. 27(5): p. 1121-9.
137. Suzuki, M., et al., The effects of boron neutron capture therapy on liver tumors and normal hepatocytes in mice. Jpn J Cancer Res, 2000. 91(10): p. 1058-64.
138. 陳亮融, 比較光子輻射與硼中子捕獲治療在頭頸癌產生之生物效應, in 核子工程與科學研究所. 2023, 國立清華大學: 新竹市. p. 57.
139. Takahashi, H., et al., Dynamic changes in immune cell profile in head and neck squamous cell carcinoma: Immunomodulatory effects of chemotherapy. Cancer Sci, 2016. 107(8): p. 1065-71.
140. Mao, L., et al., Immunogenic hypofractionated radiotherapy sensitising head and neck squamous cell carcinoma to anti-PD-L1 therapy in MDSC-dependent manner. Br J Cancer, 2023. 128(11): p. 2126-2139.
141. Zhong, L.M., et al., Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma. Oral Oncol, 2019. 95: p. 157-163.
142. Hirose, K. and M. Sato, Clinical Results and Prognostic Factors in Boron Neutron Capture Therapy for Recurrent Squamous Cell Carcinoma of the Head and Neck Under the Japan National Health Insurance System: A Retrospective Study of the Initial 47 Patients. Int J Radiat Oncol Biol Phys, 2024.
143. Hsu, F.Y., et al., Development of a tumor control probability model for boron neutron capture therapy of head and neck cancer. Front Oncol, 2023. 13: p. 1249074.
144. Hopewell, J.W., et al., Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential. Appl Radiat Isot, 2011. 69(12): p. 1737-40.
145. Kawabata, S., et al., Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Appl Radiat Isot, 2009. 67(7-8 Suppl): p. S15-8.