研究生: |
林礽昌 Jen-Chang Lin |
---|---|
論文名稱: |
雙重材料結構之熱應力研究 Investigation of Thermal Stresses of Bimaterial Structures |
指導教授: |
王偉中
Wei-Chung Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 146 |
中文關鍵詞: | 光彈法 、散射光彈法 、雙層材料 、熱應力 、ANSYS有限元素分析 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以實驗為主,數值模擬為輔,互相驗證,實驗方法採用穿透式光彈法及散射光彈法兩種光彈方法,數值模擬則採應用廣泛之ANSYS有限元素分析軟體,共同探討雙層材料結構受到熱負載時之熱應力分佈情形。首先以穿透式光彈法探討雙層材料結構熱應力分佈之情形,接著首度引用散射式光彈法針對不含缺陷及含不同位置圓孔缺陷之雙層材料試片之熱應力分佈進行探討,以雷射光切片對含圓孔缺陷之PLM-4B光彈材料試片在不同厚度位置照射以得到表層、次表層及中間層之暫態熱應力條紋,而求得次主應力差值。實驗數據之結果並與ANSYS之結果互相比較。由於實驗本身的限制而無法求得之暫態介面應力及圓孔邊應力則藉由ANSYS求得。
ABSTRACT
This dissertation focused on conducting two types of photoelastic experiments, the transmitted-light photoelastic method and the scattered-light photoelastic method, and then validating the experimental results through a finite element package ANSYS to investigate the thermal stress distribution of bimaterial structures under thermal loading.
Initially, the transmitted-light photoelastic method was applied to examine the thermal stress distribution of bimaterial structures. In addition, the scattered-light photoelastic method was first employed to study the thermal stress distribution of bimaterial structures with or without defect at different locations. Through changing the incident locations of the optical slice on the PLM-4B photoelastic material with and without defects of circular hole, the value of secondary principal stress difference (SPSD) can be obtained at the top surface, sub-surface and the middle surface of the specimen. Simultaneously, the experimental results were compared with the ANSYS simulated results. Due to the limitation of the experiments, the transient state for the interfacial stresses of the bimaterial structure and the stresses at the vicinity of the circular hole were calculated by ANSYS.
參 考 文 獻
1.G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis”, Royal Society, Proc., A82, London, pp. 172-175, 1909.
2.S. P. Timoshenko, “Analysis of Bi-metal Thermostats”, Journal of the Optical Society of America, Vol. 11, pp. 233-255, 1925.
3.E. Suhir, “Stresses in Bimetal Thermostats”, Journal of Applied Mechanics, Vol. 53 pp. 657-660, 1986.
4.A. Y. Kuo, “Thermal Stresses at the Edge of a Bimetallic Thermostat”, ASME Journal of Applied Mechanics, Vol. 56, pp.585-589, 1989.
5.J. H. Lau, “A Note on the Calculation of Thermal Stresses in Electronic Packaging by Finite Element Methods”, ASME Journal of Electronic Packaging, Vol. 111, pp. 313-320, 1989.
6.Y. H. Pao and E. Eisele, “Interfacial Shear and Peel Stresses in Multi-layered Thin Stacks Subjected to Uniform Thermal Loading”, ASME Journal of Electronic Packaging, Vol. 113, pp. 164-172, 1991.
7.M. Lee, and I. Jasiuk, “Asymptotic Expansions for the Thermal Stresses in Bonded Semi-Infinite Bi-material Strips”, ASME Journal of Electronic Packaging, Vol. 113, pp. 173-177, 1991.
8.H. B. Mirman, “Effects of Peeling Stresses in Bi-material Assembly”, ASME Journal of Electronic Packaging, Vol. 114, pp.124-131, 1991.
9.H. B. Mirman, “Interlaminar Stresses in Layered Beams”, ASME Journal of Electronic Packaging, Vol. 114, pp. 389-394, 1992.
10.W. L. Yin, “Thermal Stresses and Free-Edge Effects in Laminated Beans: A Variational Approach Using Stress Functions”, ASME Journal of Electronic Packaging, Vol. 113, pp. 68-75, 1991.
11.W. L. Yin, “Refined Variational Solutions of the Interfacial Thermal Stresses in a Laminated Beam”, ASME Journal of Electronic Packaging, Journal of Electronic Packaging, Vol. 114, pp. 193-198, 1992.
12.Z. Q. Jiang, Y. Huang, A. Chandra, “Thermal Stresses in Layered Electronic Assemblies”, ASME Journal of Electronic Packaging, Vol. 119, pp. 127-132, 1997.
13.D. post, J. D. Wood, B. Han, V. J. Parks and F. P. Gerstle, “Thermal Stresses in a Bimaterial Joints: An Experimental Analysis”, Journal of Applied. Mechanics, Vol. 61, pp. 192-198, 1994.
14.J. T. Chen and W. C. Wang, “Experimental Analysis of an Arbitrarily Inclined Semi-Infinite Crack Terminated at the Bimaterial Interface”, Journal of Experimental Mechanics, Vol. 36, No. 1, pp. 7-17, 1996.
15.R. Weller, “A New Method for Photoelasticity in Three Dimensions”, Journal of Applied Physics, Vol. 10, pp. 266, 1939.
16.W. Shelson and L. W. Smith, “A Photoelastic Method Employing Scattered-Light for the Solution of Plane Stress Problem”, Brit. Journal of Applied Physics, Vol. 7, pp. 436-439, 1956.
17.L. S. Srinath and M. M. Frocht, “Scattered-Light in Photoelasticity Basic Equipment and Techniques”, Proc. Forth US Natl. Cong. Applied. Mechanics., pp. 775-781, 1962.
18.E. L. Ross, G. Kaminski and J. C. Conway, “Measurement of Mode ⅠStress-Intensity Factors by Scattered-Light Photoelasticity”, Journal of Experimental Mechanics, pp.117-120, 1982.
19.T. Kihara, M. Unno, C. Kitada, H. Kubo and R. Nagata,” Three-Dimensional Stress Distribution Measurement in a Model of the Human Ankle Joint by Scattered-Light Polarizer Photoelasticity”, Applied Optics, Vol. 24, pp. 3363-3367, 1985.
20.B. Kenny and E. A. Patterson, “Stress Analysis of Some Nut-Bolt Connections with Modifications to the Nut Thread Form”, Journal of Strain Analysis, Vol.20, No. 1, pp. 35-40, 1985.
21.A. Katoh, J. Rao, M. Takashi and T. Kunio, “ModeⅢ Stress Intensity Factor Measurement by Scattered-Light Photoelasticity Using Digital Image Processing”, Proceedings of Asian Pacific Conference on the Fracture and Strength, JSME, pp.401-406, 1993.
22.“Standard Test Method for Determination of Modulus of Elasticity for Rigid and Semirigid Plastic Specimens by Controlled Rate of Loading Using Three-Point Bending”, D5934-02, ASTM, USA, June, 2002.
23.“Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Anaiysis”, E831-05, ASTM, USA, June, 2005.