研究生: |
吳欣潔 |
---|---|
論文名稱: |
鉛-銀-銻-碲 四元熱電材料系統之相平衡、微結構與熱電性質 Phase equilibria, microstructures and thermoelectric properties of the quaternary Pb-Ag-Sb-Te thermoelectric material system |
指導教授: | 陳信文 |
口試委員: |
高振宏
陳三元 謝克昌 賴志煌 黃炳照 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 237 |
中文關鍵詞: | 熱電材料 、鉛-銀-銻-碲 、相平衡 、微結構 、熱電性質 |
外文關鍵詞: | Thermoelectric materials, Pb-Ag-Sb-Te, Phase equilibria, Microstructure, Thermoelectric properties |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在永續發展與環境保護的前提下,熱電材料被視為重要的能源材料之一。四元鉛-銀-銻-碲(Pb-Ag-Sb-Te)為高效能熱電材料系統,其中包括四元合金AgPbmSbTe2+m、三元化合物AgSbTe2及二元化合物PbTe等,都曾被報導具極佳的熱電轉換效率。為進一步開發新穎熱電材料與開拓熱電元件應用,本研究致力於建構此四元系統及其子系統(銀-銻-碲、銀-鉛-碲與鉛-銻-碲)之相圖、探討其微結構之變化與熱電特性之關係。以實驗方法建構銀-鉛-碲(Ag-Pb-Te) 三元系統之液相線投影圖,其中的三元共晶點(組成為Ag-4.3at%Pb-62.6at%Te,反應為: L=Ag5Te3+PbTe+Te)形成具方向性層狀微結構(lamellae),200-600nm的PbTe相均勻生成於此層狀基材。此銀-鉛-碲三元共晶點為頗佳之熱電材料,具極低之熱傳導係數(0.3 W/mK),且熱電優質在400K可達0.41。本研究亦建構銀-銻-碲(Ag-Sb-Te)三元系統於400℃及250℃之等溫相圖及液相線投影圖。其中,三元相AgSbTe2穩定存在400℃等溫相圖中,且具一定的溶解度範圍(49.0-53.0at%Te 及28.0-30.0at%Sb)及非化學劑量比例之平均組成 (Ag20Sb30Te50);並以穿透式電子顯微鏡對三元相AgSbTe2進行相分析與晶體結構之鑑定。在三元銀-銻-碲液相線投影圖中,確認了具奈米級生成相的三元共晶點(L=Ag2Te+AgSbTe2+δ-Sb2Te,496.5℃),200-600nm的Ag2Te相均勻分布在AgSbTe2與δ-Sb2Te組成的基材中;以穿透式電子顯微鏡對三元銀-銻-碲共晶材料進行高解析影像分析,可鑑定出三個不同的相區,分別為AgSbTe2、Ag2Te及δ-Sb2Te;透過慢速的單方向凝固法(0.3mm/hr) 研究此三元共晶材料的固化行為,其相鑑定結果亦與電鏡分析結果一致。為進一步了解此共晶結構的生長機制,並探討其共晶點延伸致四元空間中的行為,本研究以實驗方法建構了四元系統鉛-銀-銻-碲的液相線投影圖(於36at%Te定組成下)。另外,將第四元元素(鉛)添加至三元相AgSbTe2中,形成四元合金(組成為PbxAg20Sb30-xTe50 x=3,4,5 及 6),並透過單方向凝固法合成具高密度、高純相(AgSbTe2)的片狀樣品。其中,以單方向凝固法生成的5at%Pb 與6at%Pb合金具有極低的熱傳導系數(κ),約為0.3~0.4 W/mK;檢視其微結構可發現,其存在有晶界的不均勻性與奈米級的析出物(precipitates)。5at%Pb樣品之熱電優質(zT)可達0.7-0.8 (425K),經過熱處理後,同樣組成樣品(5at%Pb)的熱電優質下降至0.4。判斷為熱處理步驟使得晶粒的尺寸增加、組成不均勻性降低,致使材料中的中長波聲子(phonon)繞射減少、熱傳導係數上升。
Thermoelectric material has been recognized as a promising candidate in the application of sustainable energy. The quaternary Pb-Ag-Sb-Te system has attracted much attention because it contains high-zT AgPb18SbTe20 (zT>2 at 800K), PbTe and AgSbTe2. The phase stability, microstructural evolution and resultant electrical/thermal transport properties of quaternary Pb-Ag-Sb-Te and the constituent systems (Ag-Sb-Te, Pb-Sb-Te and Ag-Pb-Te) are investigated. The liquidus projections of both ternary Ag-Pb-Te and Pb-Sb-Te systems are constructed. In particular, the Ag-Pb-Te ternary-eutectic alloy, with composition of Ag-4.3at%Pb-62.6at%Te, forms a partially aligned nano-sized lamellar microstructure, which comprises both the PbTe and Ag5Te3 phases, and an additional dotted PbTe of 200-600nm. This particular ternary-eutectic alloy is unidirectionally solidified using the Bridgman method, resulted in a nanostructured composite with an extremely low thermal conductivity(κ) of 0.3 W/mK and a zT peak of 0.41 at 400K. The phase diagrams of ternary Ag-Sb-Te system are constructed as well, including the 400℃ and 250℃ isothermal sections and the liquidus projection. The ternary AgSbTe2 is stabilized at 400℃ but not at 250℃, with homogeneity region of 49.0-53.0at%Te and 28.0-30.0at%Sb. The nano-scaled microstrucutre and crystal structures of the non-stoimeteric AgSbTe2 are analyzed by the transmission electron microscope (TEM). In particular, an ordered array of nano-wire microstructure, comprising a 200nm Ag2Te and a matrix of AgSbTe2+δ-Sb2Te, was resulted from a Class I reaction: L=AgSbTe2+Ag2Te+δ-Sb2Te with liquid composition of Ag-40at%Sb-36.0at%Te at 496.5℃. To understand and guide production of uniform bulk samples of this composite, the liquidus projection of quaternary Pb-Ag-Sb-Te system at 36.0at%Te isoplethal section is constructed experimentally using quenched samples. High-resolution transmission electron microscopy (TEM) confirms that these three phases are simultaneously present at the nanometer scale. Furthermore, unidirectional solidification experiments of the ternary eutectic alloy using the Bridgman method are carried out to examine the alloy's solidification behaviors. Pb-alloyed AgSbTe2 (PbxAg20Sb30-xTe50, x=3,4,5 and 6) are also unidirectionally solidified using the modified Bridgman method. The as-solidified 5at%Pb and 6at%Pb alloys, which exhibit high phase purity of AgSbTe2, contain grain-boundary inhomogeneity and nano-precipitates of δ-Sb2Te, leading to an extremely low thermal conductivity (κ) of 0.3-0.4 W/mK. A peak zT of 0.7-0.8 is found in as-solidified 5at% specimen at 425K. However, after annealing at 673K, the zT peak of 5at%Pb(annealed) decreases to 0.4, presumably due to increase in grain size and decrease in inhomogeneity.
Reference
1. M. S. El-Genk, H. H. Saber, and T. Caillat. ” Efficient segmented thermoelectric unicouples for space power applications.” Energy Conversion and Management , Vol. 44, pp. 1755-72, (2003).
2. C. D. Kramer.” Thermoelectric applications as related to biomedical engineering for NASA Johnson space center.” Materials Research Society Symposium Proceedings, 478 (Thermoelectric Materials-New Directions and Approaches), pp. 309-314, (1997).
3. T. Ikeda, S. M. Haile, V. A. Ravi, H. Azizgolshani, F. Gascoin, and G. J. Snyder, "Solidification processing of alloys in the pseudo-binary PbTe-Sb2Te3 system" Acta Mater., Vol. 55, pp. 1227-39, (2007).
4. F.J. DiSalvo. “Thermoelectric cooling and power generation.” Science, Vol. 285, pp.703-706, (1999).
5. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis,”Cubic AgPbmSbTe2+m: New Bulk Thermoelectric Materials with High Figure of Merit for Power Generation.” Science, Vol. 303, pp. 818-21, (2004).
6. B. Du, H. Li, J. Xu, X. Tang, and C. Uher, “Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 thermoelectric compound.” Chem. Mater., Vol. 22(19), pp. 5521-5527, (2010).
7. S. V. Barabash, V. Ozolins, and C. Wolverto.”First-Principles Theory of Competing Order Types, Phase Separation, and Phonon Spectra in Thermoelectric AgPbmSbTem+2 Alloys.” PRL, Vol. 101, pp. 155704-4, (2008).
8. A. Kosuga, K. Kurosaki, H. Muta, S. Yamanaka,”Thermoelectric properties of n-type Ag-Pb-Sb-Te compounds.” 24th International Conference on Thermoelectrics, pp. 45-8, (2005).
9. J. E. Ni, F. Rena, E. D. Casea, E. J. Timm,”Porosity dependence of elastic module in LAST (Lead-antimony-silver-tellurium) thermoelectric materials,” Mater. Chem. Phys., Vol.118, pp.459-66, (2009).
10. H. S. Dow, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, H. W. Lee, and D. M. Wee,” Effect of Ag or Sb addition on the thermoelectric properties of PbTe.” J. Appl. Phys., Vol. 108, p. 113709, (2010).
11. B. Paul, A. K. V, and P. Banerji, “Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers.” J. Appl. Phys., Vol.108, p. 064322, (2010).
12. H. Wang, J. F. Li,M. Zou, and T. Sui,” Synthesis and transport property of AgSbTe2 as a promising compound.” Appl. Phys. Lett., Vol. 93, pp. 202106-3, (2008).
13. R. A. Burmeister, D. A. Stevenson, “Concerning an Intermediate Phase in the Ag-Sb-Te System.” J. Appl. Phys., Vol. 34, p.1833, (1962).
14. R. M. Ayral-Marin, G. Brun, M. Maurin, and J. C. Tedenac,” Contribution to the study of silver antimony telluride (AgSbTe2).” Eur. J. Solid State Inorg. Chem., Vol. 27(5), pp. 747-57, (1990).
15. K. Bergum, T. Ikeda and G. J. Snyder, “Solubility and microstructure in the pseudo-binary PbTe-Ag2Te system.” J. Solid St. Chem.,Vol. 184, pp. 2543-2552, (2011).
16. E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis and M.G. Kanatzidis. “Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions.” J. Am. Chem. Soc., Vol.127(25), pp. 9177-90, (2005).
17. B. A. Cook, X. Wei, J. L. Harringa and M. J. Kramer. “"In-situ elevated-temperature TEM study of (AgSbTe2)15(GeTe)85." J. Mater. Sci., Vol. 42, pp. 7643-7646, (2007).
18. Y. Dong, A.S. Malik and F.J. DiSalvo. “High Power Factor of HPHT-Sintered GeTe-AgSbTe2 Alloys.” J. Electron. Mater., Vol. 40, pp. 17-24, (2011).
19. R.W. Armstrong, J.W.J. Faust and W.A. Tiller. “A Structural Study of the Compound AgSbTe2J. Appl. Phys., Vol. 31, pp. 1954-6, (1960).
20. J. P. McHugh, W. A. Tiller, S. E. Haszko, and J. H. Wernick. “Phase Diagram for the Pseudobinary System Ag2Te‐Sb2Te3.” J. Appl. Phys., Vol. 32, p.1785, (1961).
21. R.G. Maier.”Zur Kenntnis des Systems PbTe-AgSbTe2.” Z. Metallkd., Vol. 54, pp. 311-312, (1963) in German.
22. H,J. Wu and S.W Chen. “Phase equilibria of Ag-Sb-Te thermoelectric materials.” Acta Mater., Vol. 59, pp. 6463-6472, (2011).
23. J. D. Sugar and D. L. Medlin,"Precipitation of Ag2Te in the thermoelectric material AgSbTe2." J. Alloys Comp., Vol. 478, pp.75-82, (2009).
24. T. Ikeda, V. A. Ravi, and G. J. Snyder,"Formation of Sb2Te3 Widmanstatten precipitates in thermoelectric PbTe." Acta Mater., Vol.57, pp.666-672, (2009).
25. T. Ikeda, V. A. Ravi, and G. J. Snyder, “Microstructure Size Control through Cooling Rate in Thermoelectric PbTe-Sb2Te3 Composites “Metall. Mater. Trans. A, Vol.41A, pp.641-50, (2010).
26. S.-W. Chen, W. Gierlotka, H.-J. Wu and S.-K. Lin,“Lead-free solders: Materials reliability for electrons” in “Phase diagrams and their applications in Pb-free soldering”, pp. 13-44, edited by K. N. Subramanian, Wiley, (2012).
27. F. N. Rhines, "Phase Diagrams in Metallurgy, Their Development and Application." New York, McGraw-Hill, (1956).
28. S. W. Chen, C. H. Wang, S. K. Lin, C. N. Chiu, and C. C. Chen,” Phase Transformation and Microstructural Evolution in Solder Joints” JOM, Vol. 1, pp. 39-43 ,(2007).
29. S. W. Chen, H. J. Wu, Y. C. Huang, and W. Gierlotka,” Phase equilibria and solidification of ternary Sn-Bi-Ag alloys” J. Alloys Compd., Vol. 497, pp.110-117, (2010).
30. N. Saunders, P. Miodownik, Calphad, Calculation of Phase Diagrams a Comprehensive Guide, Elsevier Science, Oxford, UK, 1998.
31. H. L. Lukas, S. G. Fries, and B. Sundman: Computational Thermodynamics, Cambridge University Press, Cambridge, United Kingdom, 2007.
32. Y.C. Huang, S.W. Chen, C.Y. Chou and W. Gierlotka.” Liquidus projection and thermodynamic modeling of Sn-Zn-Cu ternary system.” J. Alloys Compd., Vol.477, pp. 283-298, (2009).
33. H. J. Wu and S. W. Chen.“ Microstructures and liquidus projection of the ternary Ag-Sb-Te system.“ J. Alloys Comp., Vol. 509, pp. 656-668, (2011).
34. J. Teng, S. Liu and R. Trivedi. “Growth and morphology of rod eutectics.” Acta Mater., Vol.56, pp.2819-2833, (2008).
35. V.T. Witusiewicz, L. Sturz, U. Hecht and S. Rex.” Thermodynamic description and unidirectional solidification of eutectic organic alloys: I. Succinonitrile-(D)camphor system.” Acta Mater., Vol.52, pp. 4561-4571, (2004).
36. V. Seetharaman and R. Trivedi. “Eutectic growth: selection of interlamellar spacings.” Metall. Trans.,Vol. 19A, pp.2955-2964, (1988).
37. S. Akamatsu, S. Bottin-Rousseau and G. Faivre.” Experimental Evidence for a Zigzag Bifurcation in Bulk Lamellar Eutectic Growth.” Phys. Rev. Lett., Vol. 93, pp. 175701-4, (2004).
38. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen. “Perspectives on thermoelectrics: from fundamentals to device applications.”Energy Environ. Sci., Vol. 5, pp. 5147-5162, (2012).
39. Y. Pei, J. Lensch-Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder,” High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping.” Adv. Funct. Mater., Vol 21(2), pp.241-249, (2010).
40. Dresselhaus MS, Chen G, Ren ZF, Dresselhaus G, Henry A, Fleurial JP. JOM 2009; 61: 86 .
41. R. Yang, G. Chen, M.S. Dresselhaus.” Thermal conductivity of simple and tubular
nanowire composites in the longitudinal direction.” Phys. Rev. B, Vol. 72, pp. 125418-125425,(2005).
42. T. Ikeda, N.J. Marolf, G.J. Snyder.” Zone Leveling Crystal Growth of Thermoelectric PbTe Alloys with Sb2Te3 Widmanstätten Precipitates.” Cryst Growth Des.,Vol. 11,pp.4183-4189, (2011).
43. T. Ikeda, M.B. Toussaint, K. Bergum, S. Iwanaga, G.J. Snyder.” Solubility and formation of ternary Widmansta¨tten precipitates in PbTe in the pseudo-binary PbTe-Bi2Te3 system.” J. Mater. Sci., Vol. 46, pp. 3846-3854, (2011).
44. J.L. Lensch-Falk, J.D. Sugar, M.A. Hekmaty, D.L. Medlin.”Morphological Evolution of Ag2Te Precipitates in Thermoelectric PbTe.” J Alloys Compd., Vol.504, pp.37-44, (2010).
45. T. Ikeda, E.S. Toberer, V.A. Ravi, G.J. Snyder, S. Aoyagi, E. Nishiboric, M. Sakata.” In situ observation of eutectoid reaction forming a PbTe-Sb₂Te₃ thermoelectric nanocomposite by synchrotron X-ray diffraction.” Scripta Mater Vol.60,pp.321-324, (2009).
46. T. Ikeda, L. A. Collins, V.A. Ravi, F. S. Gascoin, S. M. Haile, and G. J. Snyder,” Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces.” Chem. Mater., Vol. 9(4), pp.763-767, (2007).
47. J. He, S.N. Girard, M.G. Kanatzidis, V.P. Dravid.” Microstructure-Lattice thermal conductivity correlation in Nanostructured PbTe0.7S0.3Thermoelectric Materials.” Adv Funct. Mater ., Vol.20, pp. 764-772, (2010).
48. S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ail, R. Decourt.” Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys.” Acta Mater., Vol. 59, pp. 7425-7437, (2011).
49. J.R. Sootsman, J.Q. He, V.P. Dravid, S. Ballikaya, D. Vermeulen, C.Uher, M.G. Kanatzidis.” "Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites." Chem. Mater., Vol.22(3), pp. 869-875, (2010).
50. H. J. Wu, W.J. Foo, S.W. Chen, and G. J. Snyder.” Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials.” Appl. Phys. Lett., Vol. 101, pp.023107-4, (2012).
51. Rowe DM. Thermoelectric Handbook: Macro to Nano. Boca Raton: CRC/Taylor & Francis; 2006.
52. D. L. Medlin and G. J. Snyder.” Interfaces in bulk thermoelectric materials A review for Current Opinion in Colloid and Interface Science.” Curr Opin Colloid Interface Sci., Vol.14, pp. 226-235, (2009).
53. Y. A. Chang and W. A. Oates, Materials Thermodynamics, John Wiley & Sons, Hoboken, New Jersey, 2010.
54. I. Karakaya, and W.T. Thompson , Ag-Pb (Silver-Lead), Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, Vol. 1, 1990, p 72-73.
55. F. Rőmermann and R. Blachnik, ”Experimental investigation and thermodynamic calculation of excess enthalpies in the Ag-Pb-Te system.” J. Alloys Comp., Vol. 280, pp. 147-157, (1998).
56. R. Castanet, Y. Claire, M. Gilbert, and M. Laffitte,” Entropies of formation of silver-[group] B metal liquid alloys.” Rev. Int. Hautes Temp. Refract. Vol. 7, p. 51, (1970).
57. B. Z. Lee, C. S. Oh, and D. N. Lee, ”A thermodynamic evaluation of the Ag-Pb-Sb system.” J. Alloys Comp., Vol. 215, pp. 293-301, (1994).
58. P. Feschotte, F. Monachon and P. Durussel, “The binary system antimony-silver: a revision of the Ag3Sb phase boundaries. “ J. Alloys Compd., Vol. 186(2), pp. L17-L18, (1992).
59. C.S. Oh, J. H. Shim, B. J. Lee, and D. N. Lee, “A thermodynamic study on the Ag-Sb-Sn system.” J. Alloys Compd., Vol. 238, pp. 155-166, (1996).
60. F. C. Kracek, C. J. Ksanda, and L. J. Cabri, “Phase relations in the silver-tellurium system. “ Am. Miner., Vol. 51, pp. 14-28, (1966).
61. K. Kiukkola and C. Wagner,” Galvanic cells for the determination of the standard molar free energy of formation of metal halides, oxides, and sulfides at elevated temperatures.” J. Electrochem. Soc., Vol. 104, pp. 308-16, (1957).
62. L. J. Cabri, “Discussion of Empressite and stuetzite redefined by R. M. Honea.“ Am. Miner., Vol. 50, pp. 795-801, (1965).
63. I. Karakaya and W. T. Thompson, “The Ag-Te (silver-tellurium) system.” J. Phase Equilib., Vol. 12, pp. 56-63, (1991).
64. W. Gierlotka, “Thermodynamic assessment of the Ag-Te binary system.” J. Alloys Comp., Vol. 485, pp. 231-5, (2009).
65. F. D. Rosi, E. F. Hockings, and N. E. Lindenblad, ”Semiconductor materials for thermoelectric power generation.” Adv. Energy Conversion, Vol. 1, p. 151, (1961).
66. J. Androulakis, K. F. Hsu, R. Pcionek, H. Kong, C. Uher, J. J. D’Angelo, A. Downey, T. Hogan, and M. G. Kanatzidis, “Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)(m)SbTe2+m.“ Adv. Mater., Vol. 18, pp. 1170-73, (2006).
67. T. L. Ngai, D. Marshall, R. C. Sharma, and Y. A. Chang,” Thermodynamic properties and phase equilibria of the lead-tellurium binary system.” Monatsh. Chem., Vol. 118, pp. 277-300, (1987).
68. R. Blachnik and B. Gather,” Enthalpy of mixing of lead-tellurium.” J. Less Common Met., Vol. 92, pp. 207-213, (1983).
69. J.C. Lin, K.C. Hsieh, R.C. Sharma and Y. A. Chang, Pb-Te (Lead-Tellurium), Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, Vol.3, p 3017-3020, (1990).
70. R. S. Dean, “System lead-antimony.”J. Am. Chem. Soc., Vol. 45, pp. 1683-8, (1923).
71. W. Oelsen, F. Johannsen, and A. Podgornik, “Calorimetry and thermodynamics of lead-antimony alloys.”Zeitschrift fuer Erzbergbau und Metallhuettenwesen, Vol. 9, pp. 459-69, (1956).
72. G. Ghosh,” The Sb-Te (antimony-tellurium) system.” J. Phase Equilib., Vol. 15(3), pp. 349-360, (1994).
73. R. Blachnik and B. Gather. “Mischungen von GeTe, SnTe und PbTe MIT Ag2Te lin Beitrag zur Klärung der Konstitution der Ternären Ag-IVb-Te Systeme (IVb = Ge, Sn, Pb).” J. Less-Common Met., Vol. 60, pp. 25-32,(1978).
74. R. Blachnik and G. Bolte, “Ternary Chalcogenide Systems. VI.-The System Ag-Pb-Te.” Z. Metallkd., Vol. 69(10), pp. 667-672, (1978).
75. W. Gierlotka, J. Łapsa, K. Fitzner.” Thermodynamic Description of the Ag-Pb-Te
Ternary System.” J. Phase Equil. Diff.,Vol.31, pp. 509-517, (2010).
76. B.Grieb, E. Lugscheider, and J. Wilden. “Silver-Lead-Tellurium, Ternary Alloys.” VCH, Vol.2, pp. 465-476, (1988).
77. B. Blumenthal, “The Pb-Sb (Lead-Antimony) System.”Trans. AIME, Vol. 156, pp. 240-250, (1944).
78. C. R. Veale. “Compounds and crystal chemistry in polycomponent systems containing silver and tellurium-a review.” J. Less-Common Met., Vol.11, p 50-63, (1966).
79. R. M. Marin, G. Brun, and J. C. Tedenac,”Phase equilibria in the antimony telluride-silver telluride (Sb2Te3-Ag2Te) system.”J. Mater. Sci., Vol. 20(2), pp. 730-5, (1985).
80. H. Matsushita, E. Hagiwara, and A. Katsui,” Phase diagram and thermoelectric properties of Ag3-xSb1+xTe4 system.” J. Mater. Sci., Vol. 39, pp. 6299-6301, (2004).
81. R.M. Marin Ayral, B. Legendre., G. Brun, B. Liautard, and J.C. Tédenac. “The ternary system silver-antimony tellurium.study of the subternary Sb2Te3-Ag2Te-Te.” Thermochim. Acta, Vol.131, p 37-45, (1988).
82. T. Hirai, Y. Takeda ,and K. Kurata, “The pseudobinary V2VI3-IV.VI compounds systems, Bi2Te3-PbTe, Bi2Te3-SnTe, Sb2Te3-PbTe, Sb2Te3-SnTe, and Bi2Se3-SnSe. “J. Less Common Met., Vol. 13(3), pp. 352-6, (1967).
83. R. A. Reynolds, “Phase relations and thermoelectric properties of the alloy systems tin telluride-bismuth telluride and lead telluride antimony telluride.”J. Electrochem. Soc., Vol. 114(5), pp. 526-9, (1967).
84. N. K. Abrikosov, E. I. Elagina, and M. A. Popova, “The system PbTe-Sb2Te3.”Neorg. Mater., Vol. 1(12), pp. 2151-3, (1965).
85. A. Schlieper, F. RoÈmermann, and R. Blachnik, “Excess enthalpies andphase equilibria in the Pb-Sb-Te system.” Thermochimica Acta, Vol. 314, pp. 213-27, (1998).
86. G.W. Henger and E.A.J. Peretti. “Constitution Diagram for the PbTe-Sb System.” J. Chem. Eng. Data, Vol.10, p 16-18, (1965).
87. T. Ikeda, S. Iwanaga, H.-J. Wu, N. J. Marolf, S.-W. Chen, G. J. Snyder “A combinatorial approach to microstructure and thermopower of bulk thermoelectric materials: the pseudo-ternary PbTe-Ag2Te-Sb2Te3 system” J. Mater. Chem., DOI, 10.1039/C2JM32677A, (2012).
88. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis,” Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features.” Adv. Mater., Vol. 22, pp.3970-80, (2010)
89. C. Uher, in Thermoelectric Materials Research I (ed. Tritt, T.) pp.139-253 (Semiconductors and Semimetals Series 69, Elsevier, 2001).
90. G. S. Nolas, J. Poon, M. Kanatzidis,“ Recent developments in bulk thermoelectric materials. MRS Bull., Vol.31(3) , p. 199, (2006).
91. S.M. Kauzlarich, S. R. Brown, and G. J. Snyder,“ Zintl phases for thermoelectric devices.“ Dalton Trans., pp. 2099-2107, (2007).
92. D. L. Hicks and M. S. Dresselhaus,“ Thermoelectric figure of merit of a one-dimensional conductor.“ Phys. Rev. B, Vol. 47(24), pp. 16631-4, (1993).
93. Pandat, CompuTherm LLC, 437 S. Yellowstone Dr. Suite 217 Madison, WI 53719, USA.
94. H.J. Wu, S.W. Chen, T. Ikeda, G.J. Snyder. “Formation of ordered nano-wire microstructures in thermoelectric Pb-Ag-Sb-Te.” Acta Mater., Vol.60, pp.1129-1138, (2012).
95. P.E.J. Flewitt and R.K. Wild. Physical methods for materials characterization. Bristol and Philadelphia: Institute of Physics Publishing, 1994.
96. Joachim Mayer, Lucille A. Giannuzzi,Takeo Kamino, and Joseph Michael,“ TEM sample preparation and FIB-induced damage.“ MRS BULLETIN, Vol. 32, pp.400-407, (2007).
97. S. Iwanaga, E.S. Toberer, A. LaLonde, G.J. Snyder. “A high temperature apparatus for measurement of the Seebeck coefficient.” Rev, Sci, Instrum., Vol. 82, pp. 063905-6, (2011).
98. S. Iwanaga and G.J. Snyder.” Scanning Seebeck Coefficient Measurement System for Homogeneity Characterization of Bulk and Thin-Film Thermoelectric Materials.” J. Eletron. Mater., Vol. 41(6), pp. 1667-1674, (2012).
99. M. Zhou, J. Li and T. Kita.” Nanostructured AgPbmSbTem+2 System Bulk Materials with Enhanced Thermoelectric Performance.” J. Am. Chem. Soc., Vol. 130, pp. 4527-4532, (2008).
100. S.W. Chen, Y.K Chen, H.J. Wu, Y.C. Huang and C.M. Chen. “Co Solubility in Sn and Interfacial Reactions in Sn-Co/Ni Couples.” J. Electron. Mater., Vol.39(11), pp. 2418-2428, (2010).
101. M.C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974.
102. J.D. Verhoeven, Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, 1975.
103. L. Ratke, S. Diefenbach, “Liquid immiscible alloys.” Mater. Sci. Eng. RlS, Vol.R15, pp. 263-347, (1995).
104. D. Mirkovic´, J. Grőbner, and R. Schmid-Fetzer, “Solidification paths of multicomponent monotectic aluminum alloys. “ Acta Materialia, Vol.56(18), pp.5214-5222, (2008).
105. S. W. Chen, C. C. Huang, and J. C. Lin, “The relationship between the peak shape of a DTA curve and the shape of a phase diagram.”Chem. Eng. Sci., Vol.50(3), pp.417-431, (1995).
106. S. C. Jeng and S. W. Chen, “The solidification characteristics of 6061 and A356 aluminum alloys and their ceramic particle-reinforced composites.” Acta Mater., Vol. 45, pp. 4887-4899, (1997).
107. Y. C. Huang, S. W. Chen, and K. S. Wu, “Size and Substrate Effects upon Undercooling of Pb-Free Solders.“ J. Electron. Mater., Vol.39(1), pp.109-114, (2010).
108. J. H. Wernick and K. E. Benson, “ew semiconducting ternary compounds. “Phys. Chem. Solids., Vol. 3, pp.157-9, (1957).
109. U. Kattner, H. L. Lukas and G. Petzow, “Optimization and calculation of the Pb-Te system.” Calphad, Vol. 10, pp. 103-116, (1986).
110. H. Ohtani, K. Okuda, and K. Ishida, “Thermodynamic study of phase equilibria in the Pb-Sn-Sb system” J. Phase Equilibria, Vol. 16, pp.416-29, (1995).
112. Y. Pei, N.A. Heinz, A. LaLonde, G.J. Snyder.”Combination of Large Nanostructures and Complex Band Structure for High Performance Thermoelectric Lead Telluride.” Energy Environ Sci., Vol. 4, pp. 3640-3645, (2011).
113. F. Wald. “Constitutional investigations in the silver-lead-tellurium system.” J. less Common Met., Vol. 13, pp. 579-590, (1967).
114. The SGTE Substance database, version 5.0, SGTE Group, Grenoble, France 2009.
115. W. Gierlotka, J. Łapsa, D. Jendrzejczyk-Handzlik,” Thermodynamic description of the Pb-Te system using ionic liquid model.” J. Alloys Comp., Vol. 479, pp.152-6, (2009).
116. E. A. Guggenheim, Mixtures, Clarendon Press, Oxford, 1952.
117. C. R. Hewes, M. S. Adler and S. D. Senturia.” Annealing studies of PbTe and Pb1-xSnxTe.” J. Appl. Phys., Vol. 44, No.3, pp. 1327-1332, (1973).
118. J. W. Wagner and A. G. Thompson. “Growth and characterization of Lead Telluride epitaxial.” J. Electrochem. Soc., Vol. 117, pp. 936-940, (1970).
119. K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, and R.A. Segalman. "Water-Processable Polymer-Nanocrystal Hybrids for Thermoelectrics.” Nano Lett., Vol. 10(11), pp. 4664-4667, (2010).
120. E.S. Toberer, A.F. May, and G.J. Snyder,"Zintl Chemistry for Designing High Efficiency Thermoelectric Materials." Chem. Mater. 22, 624 (2010).
121. R. A. Smith, Semiconductors, 2nd ed. (Cambridge University Press, Cambridge,1978).
122. S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu and X.B. Zhao. “Phase composition, Nanoscale Microstructures and Thermoelectric Properties in Ag2-ySbyTe1+y alloys with precipitated Sb2Te3 plates.” Acta Mater., Vol. 58, pp. 4160-4169, (2010).
123. V. Jovovic and J. P. Heremans. “Measurement of the Energy Band Gap and Valence Band Structure of AgSbTe2.” Phys. Rev. B, Vol.77, pp. 245204-8, (2008)
124.A. Einstein. "Elementare Betrachtungen uber die thermische Molekularbewe- gung in festen Korpern", Ann. Phys., Vol.35, p.679, (1911).
125. D.G. Cahill, S.K. Waston and R.O. Pohl.” Lower Limit to the Thermal Conductivity of Disordered Crystals.” Phys. Rev. B, Vol.46, pp. 6131-6140, (1992).
126. R. Wolfe, J.H. Wernick, S.E. Haszko.”Anomalous Hall Effect in AgSbTe2.” J. Appl. Phys., Vol. 31, pp. 1959-1964, (1960).
127. A. F. Ioffe. Semiconductor thermoelements, and Thermoelectric cooling, Infosearch, London, 1957.
128. C. Chiritescu, D.G. Cahill, C. Heideman, Q. Lin, C. Mortensen, N.T. Nguyen, D. Johnson, R. Rostek and H. Böttner. “Low thermal conductivity in nanoscale layered materials synthesized by the method of modulated elemental reactants.” J. Appl. Phys., Vol.104, pp. 033533-5, (2008).
129. P. E. Hopkins and E. S. Piekos.” Lower limit to phonon thermal conductivity of disordered, layered solids.” Appl. Phys. Lett., Vol. 94, pp.181901-3, (2009).