簡易檢索 / 詳目顯示

研究生: 劉邵玟
Liu, Shao-Wen
論文名稱: 應用於大尺寸高解析度有機發光二極體顯示器外部補償系統之電流感測電路
The Design of a Current Sensing Circuit for External Compensation System of Large Size High Resolution AMOLED Displays
指導教授: 盧志文
Lu, Chih-Wen
口試委員: 戴亞翔
Tai, Ya-Hsiang
劉柏村
Liu, Po-Tsun
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 有機發光二極體顯示器外部補償系統電流感測電路
外文關鍵詞: AMOLED display, external compensation system, current sensing circuit
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為應用於有機發光二極體顯示器外部補償系統之電流感測電路設計。有機發光二極體顯示器的畫素電路之薄膜電晶體會由於製程差異或在長時間的操作下元件老化衰退導致其臨界電壓與電子遷移率產生偏移現象。除此之外,有機發光二極體也會隨著使用時間產生衰退現象使得臨界電壓上升。上述因素將導致面板顯示品質降低,故本研究設計的電流感測電路將針對畫素電路內的驅動薄膜電晶體之臨界電壓與電子遷移率,以及有機發光二極體的衰退現象透過測量電流之方式進行感測。
    此感測電路有200個通道,每個通道包含將畫素電流轉為電壓的電流積分器、電壓位準轉換器及取樣保持電路。研究中提出的電流積分器其放大器架構與頻率補償方式能夠克服面板負載影響,提高電流感測準確度及線性度。另外還加入了offset cancelling架構,解決每通道間各自放大器會有不同offset的問題,確保200個通道感測的一致性。
    此感測電路所偵測之畫素電流範圍為-0.5μA~0.5μA,輸入電壓範圍為6V~9V,輸出電壓範圍為0.4V~1.4V,並操作在18V/1.8V工作電壓下。使用世界先進積體電路股份有限公司所提供的VIS 0.18μm 1P4M CMOS 高壓製程設計與下線。模擬結果其電流偵測解析度可達1nA。


    In this thesis, the author designed a current sensing circuit for the external compensation of an active matrix organic light emitting diode (AMOLED) display. Due to process variation, the thin-film transistors (TFTs) in AMOLED display have different threshold voltage and electron mobility, also with long-term operation aging the device, the above characteristics may drift form one to another. Furthermore, threshold voltage of OLED rises with the degradation of the organic materials. consequently, these problems reduce the overall quality of the AMOLED display. Therefore, the current sensing circuit is designed to sense the electrical characteristics of these devices for latter external compensation.
    The designed current sensing circuit has 200 channels, each channel includes a current integrator which transfer the sensed pixel current to a voltage output, a voltage level shifter and a sample and hold circuit. The proposed operational amplifier and its frequency compensation method used in the current integrator can cope with the effect of huge display panel loading, enhance the accuracy and linearity of the current sensing. Additionally, an offset cancelling technic implemented in the amplifiers could bring out uniform sensing qualities throughout 200 channels.
    The input current range of the sensing circuit is -0.5μA~0.5μA, the input common mode voltage is 6V~9V, and the output voltage range is 0.4V~1.4V. The circuit operates under 18V/1.8V supply voltage, implemented using Vanguard International Semiconductor 0.18μm 1P6M CMOS high voltage process, and its current sensing accuracy can achieve 1nA.

    中文摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文架構 4 第二章 有機發光二極體顯示器及補償系統簡介 5 2.1 有機發光二極體顯示器簡介 5 2.1.1 有機發光二極體簡介 5 2.1.2 薄膜電晶體簡介 6 2.1.3 OLED顯示器畫素陣列 7 2.2 AMOLED驅動方式簡介 7 2.2.1 電壓驅動法(Voltage-Driving Method) 7 2.2.2 電流驅動法(Current-Driving Method) 8 2.3 AMOLED顯示器補償方式簡介 10 2.3.1 內部補償法(Internal Compensation Method) 10 2.3.2 外部補償法(External Compensation Method) 12 第三章 外部補償系統之電流感測電路介紹 15 3.1 電流感測原理 16 3.2 電路架構與操作原理 17 3.2.1 重置階段(Reset Phase) 18 3.2.2 積分階段(Integration Phase) 19 3.2.3 取樣與保持電路操作模式 21 3.3 電流感測電路參數介紹 23 3.3.1 最低有效位元(Least Significant Bit, LSB) 23 3.3.2 微分非線性度(Differential Nonlinearity, DNL) 23 3.3.3 積分非線性度(Integral Nonlinearity, INL) 24 3.3.4 增益誤差(Gain Error) 25 3.3.5 偏移誤差(Offset Error) 26 第四章 電路實現與設計 27 4.1 偏移誤差校正(Offset Error Calibration) 27 4.1.1 偏移電壓影響 27 4.1.2 偏移抵消電路架構與操作模式 30 4.1.3 偏移抵消電路誤差考量與設計細節 32 4.1.4 完整電流感測電路架構與操作 35 4.2 增益誤差考量與電流積分準確度分析 37 4.2.1 大面板負載下的電流積分 37 4.2.2 運算放大器架構與雜散電容對電流積分影響 38 4.3 運算放大器輸出級疊接與改良式頻率補償 42 4.3.1 電晶體疊接屏蔽特性(Shielding Property) 42 4.3.2 輸出級疊接運算放大器 43 4.3.3 改良式頻率補償 44 4.4 時脈產生電路設計 46 第五章 電路模擬結果 50 5.1 運算放大器 50 5.2 電流感測電路 53 5.2.1 線性度模擬 54 5.2.2 增益誤差模擬 56 5.2.3 偏移誤差模擬 57 5.2.4 模擬結果討論 61 5.3 電路佈局 62 第六章 量測環境架設 63 第七章 結論與未來展望 65 7.1 結論 65 7.2 未來展望 65 參考文獻 66

    [1] S. Kunić and Z. Šego, "OLED technology and displays," Proceedings ELMAR-2012, Zadar, pp. 31-35, 2012.
    [2] Z. D. Popovic and H. Aziz, "Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs)," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, pp. 362-371, March-April 2002.
    [3] M. Stewart, R. S. Howell, L. Pires and M. K. Hatalis, "Polysilicon TFT technology for active matrix OLED displays," in IEEE Transactions on Electron Devices, vol. 48, no. 5, pp. 845-851, May 2001.
    [4] J. H. Lee, J. H. Kim and M. K. Han, "A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED," in IEEE Electron Device Letters, vol. 26, no. 12, pp. 897-899, Dec. 2005.
    [5] J. Lih, C. Sung, C. Li, T. Hsiao, and H. Lee, "Comparison of a‐Si and Poly‐Si for AMOLED displays," Journal of the Society for Information Display, vol. 12, no. 4, pp. 367-371, 2004.
    [6] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, and S. S. Kim, "Amorphous‐oxide TFT backplane for large‐sized AMOLED TVs," Journal of the Society for Information Display, vol. 19, no. 1, pp. 16-20, 2011.
    [7] Y. Kataoka, H. Imai, Y. Nakata, T. Daitoh, T. M. Kimura, T. Nakano, Y. Mizuno, T. Oketani, M. Takahashi, M. Tsubuku, H. Miyake, T. I. Hirakata, J. Koyama, S. Yamazaki, J. Koezuka, and K. Okazaki, "56.1: Development of IGZO‐TFT and Creation of New Devices Using IGZO‐TFT," SID Symposium Digest of Technical Papers, vol. 44, no. 1, pp. 771-774, 2013.
    [8] H. D. Kim, J. K. Jeong, H. Chung, and Y. Mo, "22.1: Invited Paper: Technological Challenges for Large‐Size AMOLED Display," SID Symposium Digest of Technical Papers, vol. 39, no. 1, pp. 291-294, 2008.
    [9] N. Nodera, S. Utsugi, S. Ishida, R. Takakura, Y. Matsushima, S. Michinaka, T. Matsumoto, K. Kobayashi, and T. Oketani, "Novel LTPS technology for large substrate," Journal of the Society for Information Display, vol. 47, no. 1, pp. 915-918, 2016.

    [10] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, and S. S. Kim, "69.3: Amorphous Oxide TFT Backplane for Large Size AMOLED TVs," SID Symposium Digest of Technical Papers, vol. 41, no. 1, pp. 1037-1040, 2010.
    [11] Y. H. Chen, C. A. Huang, T. W. Chen, Y. S. Lin, Y. J. Hsiao, C. Y. Lu, C. M. Chao, Y. P. Kuo, C. C. Nen, F. W. Chang, H. S. Lin, H. H. Lu, L. H. Chang, Y. H. Lin, "58.2: High‐Performance Large‐Size OLED Tv with Ultra Hd Resolution," SID Symposium Digest of Technical Papers, vol. 46, no. 1, pp. 869-871, 2015.
    [12] H. Shin, S. Takasugi, K. Park, S. Choi, Y. Jeong, H. Kim, C. Oh, and B. Ahn, "50.1: Invited Paper: Technological Progress of Panel Design and Compensation Methods for Large‐Size UHD OLED TVs," SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 720-723, 2014
    [13] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, no. 1, pp. 83-99, Jan.-Feb. 1998.
    [14] R. M. Dawson and M. G. Kane, "Pursuit of active matrix organic light emitting diode displays," in Dig. Tech. Papers, SID Int. Symp., San Jose, CA, June 5–7, 2001, pp. 372–375.
    [15] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan and D. Striakhilev, "Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic," in IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1477-1486, Sept. 2004.
    [16] G. R. Chaji, P. Servati and A. Nathan, "Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel," in Electronics Letters, vol. 41, no. 8, pp. 499-500, 14 April 2005.
    [17] A. Nathan, G. R. Chaji and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," in Journal of Display Technology, vol. 1, no. 2, pp. 267-277, Dec. 2005.
    [18] Y. C. Lin and H. P. D. Shieh, "A novel current memory circuit for AMOLEDs," in IEEE Transactions on Electron Devices, vol. 51, no. 6, pp. 1037-1040, June 2004.

    [19] Y. Jeon, J. Jeon, Y. Son, J. Huh and G. Cho, "A High-Speed Current-Mode Data Driver With Push-Pull Transient Current Feedforward for Full-HD AMOLED Displays," in IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1881-1895, Sept. 2010.
    [20] C. Lin and Y. Chen, "A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED," in IEEE Electron Device Letters, vol. 28, no. 2, pp. 129-131, Feb. 2007.
    [21] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, "A new pixel circuit for driving organic light-emitting diode with low temperature polycrystalline silicon thin-film transistors," in Journal of Display Technology, vol. 1, no. 1, pp. 100-104, Sept. 2005.
    [22] S. H. Jung, W. J. Nam and M. K. Han, "A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs," in IEEE Electron Device Letters, vol. 25, no. 10, pp. 690-692, Oct. 2004.
    [23] S. Ono, K. Miwa, Y. Maekawa and T. Tsujimura, " Compensation Circuit for AM OLED Displays Composed of Two TFTs and One Capacitor," in IEEE Transactions on Electron Devices, vol. 54, no. 3, pp. 462-467, March 2007.
    [24] S. J. Ashtiani, G. R. Chaji and A. Nathan, "AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation," in Journal of Display Technology, vol. 3, no. 1, pp. 36-39, March 2007.
    [25] Y. Liu, Y. Wu, S. Jiao, W. Tan, J. Li, C. Fang, and P. Lu, "P‐168: Top Emission WOLED for High Resolution OLED TV," SID Symposium Digest of Technical Papers, vol. 49, no. 1, pp. 1793-1795, 2018.
    [26] C. Lee, D. Moon, J. Han, N. Park, S. Baik, and S. Ju, "P‐82: Top Emission Organic Light Emitting Diode with Ni Anode," SID Symposium Digest of Technical Papers, vol. 34, no. 1, pp. 533-535, 2003.
    [27] H. In and O. Kwon, "External Compensation of Nonuniform Electrical Characteristics of Thin-Film Transistors and Degradation of OLED Devices in AMOLED Displays," in IEEE Electron Device Letters, vol. 30, no. 4, pp. 377-379, April 2009.

    [28] H. J. In, K. H. Oh, I. Lee, D. H. Ryu, S. M. Choi, K. N. Kim, H. D. Kim, and O. K. Kwon, "An Advanced External Compensation System for Active Matrix Organic Light-Emitting Diode Displays With Poly-Si Thin-Film Transistor Backplane," in IEEE Transactions on Electron Devices, vol. 57, no. 11, pp. 3012-3019, Nov. 2010.
    [29] J. S. Bang, H. S. Kim, K. D. Kim, O. J. Kwon, C. S. Shin, J. Lee, and G. H. Cho, "A Hybrid AMOLED Driver IC for Real-Time TFT Nonuniformity Compensation," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 966-978, April 2016.
    [30] K. Lee, Y. Hsu, P. C. -. Chao and W. Chen, "A New Compensation Method for Emission Degradation in an AMOLED Display Via an External Algorithm, New Pixel Circuit, and Models of Prior Measurements," in Journal of Display Technology, vol. 10, no. 3, pp. 189-197, March 2014.
    [31] Y.‐H. Tai, and C.‐H. Lin, "An external compensation method for AMOLED using the concept of ramp‐stop, " Journal of the Society for Information Display, vol. 25, no. 11, pp. 672-675, 2017.
    [32] C. Lu, "A Rail-To-Rail Class-AB Amplifier With an Offset Cancellation for LCD Drivers," in IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 525-537, Feb. 2009.

    QR CODE