簡易檢索 / 詳目顯示

研究生: 黃立婷
論文名稱: 在微流體晶片中建立三維血管新生模式
Establishment of three-dimensional angiogenesis models on microfluidic chips
指導教授: 張晃猷
口試委員: 劉承賢
徐琅
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 64
中文關鍵詞: 血管新生微流體晶片
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管新生在傷口修復、器官移植,以及腫瘤生長和轉移,都扮演著非常重要的角色。然而,目前許多促血管生長因子或是抗血管新生的藥物篩選研究,都是在二維的單層細胞培養條件下進行,無法真正模擬體內組織的微環境。最近微流體技術的長足發展提供細胞三維培養良好的微環境,可做為體外血管新生研究的平台。然而目前微流體技術常有設計複雜、操作困難等缺點。此外,在微流體系統培養內皮細胞的過程,給予適當流速以進行培養液的連續灌流仍相當困難。在本研究中,我們設計了三種微流體系統以建立體外三維血管新生模式,分別為PEG-DA微結構、PDMS微結構和無任何微結構之微流體晶片。接著將製作好的微流體晶片建立三維細胞培養微環境,包括將腫瘤類球體和內皮細胞進行共培養,提供不同流速、垂直或水平放置微流體晶片,以及給予細胞不同濃度的血管內皮生長因子,探討不同環境變因對於血管新生的影響。實驗結果顯示,在無結構之微流體晶片中,內皮細胞可形成類似血管的管狀結構,並可培養至第5天。在垂直微流體晶片中給予2 μL/min的流速,能在本研究設計之微流體晶片中建立一個最適當的血管新生環境。在模擬體內腫瘤引起血管新生的研究中,將腫瘤類球體和內皮細胞進行共培養,更能觀察到內皮細胞被誘導朝腫瘤類球體的方向生長遷移及進行血管新生的情形。此外,光學同調斷層掃描能對於在三維環境中的腫瘤類球體進行斷層掃描之影像擷取。因此,微流體晶片合併光學同調斷層掃描能提供一個完整平台,未來對於生物學上的分析及藥物篩選,有相當大的幫助。


    Abstract ………………………………………………………………………………..I 中文摘要 ……………………………………………………………..……………..III 致謝 ……………………………………………………………..…………………..IV 縮寫 ……………………………………………………………………………….....V 附錄 ………………………………………………………………………………..VII 目錄 ……………………………………………………………………………….VIII 前言 …………………………………………………………………………………..1 材料與方法 …………………………………………………………………………..8 細胞株和培養基 ……………………………………………………………….8 基質膠的製備 ………………………………………………………………….8 類球體的製作 ………………………………………………………………….9 探討在液態培養中HepG2類球體誘導HMEC-1形成血管的情形 …………...9 探討在胞外基質膠體中HepG2類球體誘導HMEC-1形成血管的情形 …….10 微流體晶片之模板設計和微流體晶片的上蓋模板之製備 ………………...11 官能基化玻璃之製備 ………………………………………………………...11 PEG-DA微結構之製備 ………………………………………………………11 不同微結構之微流體晶片 …………………………………………………...12 以PEG-DA製作微結構之微流體晶片 ……………………………......12 以PDMS製作微結構之微流體晶片 ……………………………..........13 無任何微結構之微流體晶片 ……………………………......................13 細胞培養於不同系統的微流體晶片之方法與條件 ……………...................13 以PEG-DA製作微結構之微流體晶片 ……………..............................13 以PDMS製作微結構之微流體晶片 ……………..................................14 無任何微結構之微流體晶片 ………......................................................15 以Image J定量HMEC-1在無結構之微流體晶片形成血管新生的長度 .......16 以光學同調斷層掃描與倒立式顯微鏡觀察類球體 .......................................16 實驗結果 ……………………………………………………....................................18 探討在液態培養中HepG2類球體誘導HMEC-1形成血管的情形 ...............18 探討在胞外基質膠體中HepG2類球體誘導HMEC-1形成血管的情形 .......18 細胞培養於不同系統的微流體晶片之血管新生情形 ……...........................19 以PEG-DA製作微結構之微流體晶片 ……..........................................20 以PDMS製作微結構之微流體晶片 …..................................................21 無任何微結構之微流體晶片 ..................................................................23 量化HMEC-1在無結構之微流體晶片形成血管新生的長度 ........................26 紅色聚苯乙烯顆粒注入微流體晶片的情形 ...................................................28 以光學同調斷層掃描與倒立式顯微鏡觀察類球體 ………...........................28 討論 …………………………………........................................................................31 圖表 …………………………………........................................................................34 參考文獻 …………………………............................................................................58

    Akiyama, M., Nonomura, H., Kamil, S. H. and Ignotz, R. A. 2006. Periosteal cell pellet culture system: a new technique for bone engineering. Cell Transplantation 15: 521- 532.
    Ateshian, G. A. 2007. Artificial cartilage: weaving in three dimensions. Nature Materials 6: 89- 90.
    Bao, G.. and Suresh, S. 2003. Cell and molecular mechanics of biological materials. Nature Materials 2: 715- 725.
    Carmeliet, P. 2000. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine 6: 389- 395.
    Carrion, B., Huang, C. P., Ghajar, C. M., Kachga, S., Kniazeva, E., Jeon, N. L. and Putnam, A. J. 2010. Recreating the perivascular niche ex vivo using a microfluidic approach. Biotechnology and Bioengineering 107: 1020- 1028.
    Chapekar, M. S. 2000. Tissue engineering: challenges and opportunities. Journal of Biomedical Materials Research 53: 617- 620.
    Chung, S., Sudo, R., Mack, P. J., Wan, C. R., Vickerman, V. and Kamm, R. 2009. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab on a Chip 9: 269- 275.
    Chung, S., Sudo, R., Vickerman, V., Zervantonakis, I. K. and Kamm, R. D. 2010. Microfluidic platforms for studies of angiogenesis, cell migration, and cell–cell interactions. Annals of Biomedical Engineering 38: 1164- 1177.
    Chung, S., Sudo, R., Zervantonakis, I. K., Rimchala, T. and Kamm, R. D. 2009. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Advanced Materials 21: 4863- 4867.
    Cukierman, E., Pankov, R., Daron R. Stevens and Kenneth M. Yamada. 2001. Taking cell-matrix adhesions to the third dimension. Science 294: 1708- 1712.
    Dai, X. Z., Cai, S. X., Ye, Q. F, Jiang, J. H., Yan, X. Q., Xiong, X., Jiang, Q. F., Wang, Albert Chih-Lueh and Tan, Y. 2011. A novel in vitro angiogenesis model based on a microfluidic device. Chinese Science Bulletin 56: 3301- 3309.
    Del Duca, D., Werbowetski, T. and Del Maestro, R. F. 2004. Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. Journal of Neuro-Oncology 67: 295- 303.
    Dubessy, C., Merlin, J. M., Marchal, C. and Guillemin, F. 2000. Spheroids in radiobiology and photodynamic therapy. Critical Reviews in Oncology/Hematology 36: 179- 192.
    Even-Ram, S. and Yamada, K. M. 2005. Cell migration in 3D matrix. Current Opinion in Cell Biology 17: 524- 532.
    Folkman, J. 1971. Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine 285: 1182- 1186.
    Folkman, J. 2007. Angiogenesis: an organizing principle for drug discovery? Nature 6: 273- 286.
    Folkman, J. and Haudenschild, C. 1980. Angiogenesis in vitro. Nature 288: 551- 556.
    Folkman, J. and Shing, Y. 1992. Angiogenesis. The Journal of Biological Chemistry 267: 10931- 10934.
    Fournier, N. and Doillon, C. J. 1992. In vitro angiogenesis in fibrin matrices containing firbronectin or hyaluronic acid. Cell Biology International 16: 1251- 1263.
    Freed, L. E. and Vunjak-Novakovic, G. 1997. Tissue culture bioreactors: chondrogenesis as a model system. In: Lanza, R. P., Langer, R., Chick, W. L., editors. Principles of tissue engineering. R.G. Landes Company, Austin: Academic Press 151- 165.
    Fukuda, J., Khademhosseini, A., Yeo, Y., Yang, X., Yeh, J., Eng, G., Blumling, J., Wang, C. F., Kohane, D. S. and Langer, R. 2006. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27: 5259- 5267.
    Fukuda, J., Sakai, Y. and Nakazawa, K. 2006. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 27: 1061- 1070.
    Gillette, B. M., Jensen, J. A., Tang, B., Yang, G. J., Bazargan-Lari, A., Zhong, M. and Sia, S. K. 2008. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nature Materials 7: 636- 640.
    Grieve, K., Dubois, A., Simonutti, M., Paques, M., Sahel, J., Gargasson, L., Jean-Francois and Boccara, C. 2005. In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography. Optics Express 13: 6286- 6295.
    Griffith, L. G.. and Naughton, G.. 2002. Tissue Engineering: current challenges and expanding opportunities. Science 295: 1009- 1014.
    Hughes, C. S., Postovit, L. M. and Lajoie, G.. A. 2010. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 10: 1886- 1890.
    Jain, R. K., Schlenger, K., Hockel, M. and Yuan, F. 1997. Quantitative angiogenesis assays: progress and problems. Nature Medicine 3: 1203- 1208.
    Kanzawa, S., Endo, H. and Shioya, N. 1993. Improved in vitro angiogenesis model by collagen density reduction and the use of type III collagen. Annals of Plastic Surgery 30: 244- 251.
    Kelm, J. M. and Fussenegger, M. 2004. Microscale tissue engineering using gravity-enforced cell assembly. Trends and Biotechnology 22: 195- 202.
    Kelm, J. M., Djonov, V., Ittner, L. M., Fluri, D., Born, W., Hoerstrup, S. P. and Fussenegger, M. 2006. Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Engineering 12: 2151- 2160.
    Kelm, J. M., Timmins, N.E., Brown, C. J., Fussenegger, M. and Nielsen, L. K. 2003. Method for generation of homogenous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering 83: 173- 180.
    Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H. P., Kraft, T., Leyh, R. and Haverich, A. 2002. In vitro engineering of heart muscle: artificial myocardial tissue. The Journal of Thoracic and Cardiovascular Surgery 124: 63- 69.
    Kondo, T., Ohta, T., Igura, K., Hara, Y. and Kaji, D. 2002. Tea catechins inhibit angiogenesis endothelial cell growth, migration in vitro, measured by human and tube formation through inhibition of VEGF receptor binding. Cancer Letters 180: 139- 144.
    Kothapalli, C. R., Veen, E. van, Valence, S. de, Chung, S., Zervantonakis, I. K., Gertler, F. B. and Kamm, R. D. 2011. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab on a Chip 11: 497- 507.
    Kunz-Schughart, L. A., Kreutz, M. and Knuechel, R. 1998. Multicellular spheroids: a three-dimensional in vitro culture system to study tumor biology. International Journal of Experimental Pathology 79: 1- 23.
    Laubscher, M., Ducros, M., Karamata, B., Lasser, T. and Salathe, R. 2002. Video-rate three-dimensional optical coherence tomography. Optics Express 10: 429- 435.
    Lawley, T. J. and Kubota, Y. 1989. Induction of morphologic differentiation of endothelial cells in culture. Journal of Investigative Dermatology 93: 59S- 61S.
    Li, R. K., Yau, T. M., Weisel, R. D., Mickle, D. A., Sakai, T., Choi, A. and Jia, Z. Q. 2000. Construction of a bioengineered cardiac graft. The Journal of Thoracic and Cardiovascular Surgery 119: 368- 375.
    Lin, R. Z. and Chang, H. Y. 2008. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal 3: 1172- 1184.
    Lin, R. Z., Ho, C. T., Liu, C. H. and Chang, H. Y. 2006. Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell and Tissue Research 324: 411- 422.
    Luo, Y. and Shoichet, M. S. 2004. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials 3: 249- 253.
    Mack, P. J., Zhang, Y., Chung, S., Vickerman, V., Kamm, R. D. and Garcia-Cardena, G. 2009. Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. The Journal of Biological Chemistry 284: 8412- 8420.
    Meyvantsson, I. and Beebe, D. J. 2008. Cell culture models in microfluidic systems. Annual Review of Analytical Chemistry 1: 423- 449.
    Moutos, F. T., Freed, L. E. and Guilak, F. 2007. A biomimetic three-dimensional woven composite scaffokd for functional tissue engineering of cartilage. Nature Materials 6: 162- 167.
    Mueller-Klieser, W. 2000. Tumor biology experimental therapeutics. Critical Reviews in Oncology/Hematology 36: 123- 139.
    Mustonen, T. and Alitalo, K. 1995. Endothelial receptor tyrosine kinases involved in angiogenesis. The Journal of Cell Biology 129: 895- 898.
    Pampaloni, F., Reynaud, E. G. and Stelzer, E. H. 2007. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology 8: 839- 845.
    Qihao, Z., Xigu, C., Guanghui, C. and Weiwei, Z. 2007. Spheroid formation and differentiation into hepatocyte-like cells of rat mesenchymal stem cell induced by co-culture with liver cells. DNA and Cell Biology 26: 497- 503.
    Sauter, E. R., Nesbit, M., Watson, J. C., Klein-Szanto, A., Litwin, S. and Herlyn, M. 1999. Vascular endothelial growth factor is a marker of tumor invasion and metastasis in squamous cell carcinomas of the head and neck. Clinical Cancer Research 5: 775- 782.
    Senger, D. R., van de Water, L., Brown, L. F., Nagy, J. A., Yeo, K-T., Berse, B., Jackman, R. W., Dvorak, A. M. and Dvorak, H. F. 1993. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer and Metastasis Reviews 12: 303- 324.
    Shamloo, A., Ma, N., Poo, M. M., Sohn, L. L. and Heilshorn, S. C. 2008. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab on a Chip 8: 1292- 1299.
    Sharma, M., Verma, Y., Rao, K. D., Nair, R. and Gupta, P. K. 2007. Imaging growth dynamics of tumor spheroids using optical coherence tomography. Biotechnology Letters 29: 273- 278.
    Shibuya, M. 1995. Role of VEGF-Flt receptor system in normal and tumor angiogenesis. Advances in Cancer Research 67: 281- 316.
    Shin, Y., Jeon, J. S., Han, S., Jung, G. S., Shin, S., Lee, S. H., Sudo, R., Kamm, R. D. and Chung, S. 2011. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab on a Chip 11: 2175- 2181.
    Sodunke, T. R., Turner, K. K., Caldwell, S. A., McBride, K. W., Reginato, M. J. and Noh, H. M. 2007. Micropatterns of Matrigel for three-dimensional epithelial cultures. Biomaterials 28: 4006- 4016.
    Soker, S., Machado, M. and Atala, A. 2000. Systems for therapeutic angiogenesis in tissue engineering. World Journal of Urology 18: 10- 18.
    Staton, C. A., Stribbling, S. M., Tazzyman, S., Hughes, R., Brown, N. J. and Lewis, C. E. 2004. Current methods for assaying angiogenesis in vitro and in vivo. International Journal of Experimental Pathology 85: 233- 248.
    Sudo, R., Chung, S., Zervantonakis, I. K., Vickerman, V., Toshimitsu, Y., Griffith, L. G. and Kamm, R. D. 2009. Transport-mediated angiogenesis in 3D epithelial co-culture. The FASEB Journal 23: 2155- 2164.
    Veikkola, T., Karkkainen, M., Claesson-Welsh, L. and Alitalo, K. 2000. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Research 60: 203- 212.
    Vickerman, V., Blundo, J., Chung, S. and Kamm, R. 2008. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab on a Chip 8: 1468- 1477.
    Wartenberg, M., Donmez, F., Ling, F. C., Acker, H., Jurgen, H. and Sauer, H. 2001. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. The FASEB Journal 15: 995- 1005.
    Wu, L. Y., Di Carlo, D. and Lee, L. P. 2008. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomedical Microdevices 10: 197- 202.
    Yamada, K. M. and Cukierman, E. 2007. Modeling tissue morphogenesis and cancer in 3D. Cell 130: 601- 610.
    Yu, P., Mustata, M., Turek, J. J., French, P. M. W., Melloch, M. R. and Nolte, D. D. 2003. Holographic optical coherence imaging of tumor spheroids. Applied Physics Letters 83: 575- 577.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE