簡易檢索 / 詳目顯示

研究生: 周哲宇
Chou, Che-Yu
論文名稱: 適用於太赫茲時域光譜單像素成像系統之三維張量壓縮感知重建處理器積體電路設計與實作
VLSI Design and Implementation of 3-D Tensor Compressive Sensing Reconstruction Processor for THz-TDS Single-Pixel Imaging Systems
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 吳安宇
Wu, An-Yeu
楊家驤
Yang, Chia-Hsiang
蔡佩芸
Tsai, Pei-Yun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 81
中文關鍵詞: 張量壓縮感知超大型積體電路太赫茲時域光譜單像素成像
外文關鍵詞: Tensor Compressive Sensing, VLSI, THz-TDS, Single-pixel imaging
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太赫茲波因擁有穿透非光學不透明的材質,並且對生物組織相對無害等特殊 特性,有諸多研究指出,太赫茲是生物醫學影像中的斷層掃描、半導體電路檢測、物質分析等應用中的有效工具,因此在近年來,太赫茲研究快速蓬勃的發展。
    儘管太赫茲強大的特性已在許多研究中證實,但是太赫茲技術用於成像時會 面臨太赫茲輻射源與接受器成本昂貴的問題,並且,目前也無高敏感度的偵測器 陣列,因此一種同時可兼顧高成像品質、高成像速度的技術是單像素壓縮感知成 像系統。單像素成像僅利用單個接收器,透過更換多個空間遮蔽來同時採樣和壓 縮訊號,最後再利用壓縮感知理論與可靠的還原演算法進行訊號重建。
    本研究基於太赫茲時域光譜單像素壓縮感知成像系統進行物質分析的探討,提出一個可實際應用的估測模型,透過太赫茲穿透物質還原之三維張量訊號,導出物質折射率與物質厚度對各回波的時間延遲方程式,進而計算出物質折射係數與物質厚度,增加其應用層面,最終建出物質分析估測系統。同時,本研究亦導入子區塊採樣技巧於此系統中以減少運算量,在本研究之系統規格上可減少89%運算量。
    除此之外,本研究為了加速系統內的張量訊號重建過程,設計出一硬體處理器,考慮到晶片面積成本的限制,本研究基於現存之張量廣義軟臨界值還原演算法,提出一適用於硬體架構的張量旋轉矩陣化廣義軟臨界值還原演算法。提出的 演算法可將晶片內部儲存張量的面積縮減為儲存矩陣的面積,並且透過張量尋轉、交換等張量運算性質,與直接將現存演算法張量矩陣化的方式相比,可進一步的 降低53%的資料存取次數與20%運算量。最終,本研究之處理器以台積電28奈米製程下線,繞線後時脈為257 MHz、晶片面積為1.001平方毫米、吞吐量為一秒鐘2.73個32×32×32×32元素的結果、重建所需時間為366毫秒。


    Terahertz waves exhibit unique characteristics, such as the ability to penetrate optically opaque materials and being relatively harmless to biological tissues. Numerous studies have identified terahertz waves as an effective tool in applications such as biomedical imaging for tomography, semiconductor circuit inspection, and material analysis. Consequently, terahertz research has experienced rapid growth in recent years.

    Despite the proven powerful properties of terahertz waves, their application in imaging faces challenges due to the high cost of terahertz sources and detectors. Additionally, there are currently no high-sensitivity detector arrays available. A technique that can achieve both high imaging quality and speed is the single-pixel compressive sensing imaging system. Single-pixel imaging uses only one detector to sample and compress signals simultaneously by employing multiple spatial masks, then reconstructing signals through compressive sensing theory and reliable reconstruction algorithms.

    This research based on the THz-TDS (Time-domain spectroscopy) single-pixel compressive sensing imaging system to explore material analysis, proposes a practical estimation model and derives time-delay equations for estimating material refractive index and thickness with a 3-D tensor signal reconstructed from the complete transient response of terahertz waves penetrating the material. Moreover, a sub-block sampling technique is introduced into the estimation system to reduce the computational complexity for the existing reconstruction algorithm - T-GIST, achieving an 89% reduction in computation based on the system specifications used in this study.

    In addition, to accelerate the tensor signal reconstruction process, this study proposes a 3-D tensor reconstruction processor. Considering the area cost constraints of the chip, this study also proposes a tensor unfolding with permutation generalized iterative soft-thresholding (TUP-GIST) reconstruction algorithm suitable for hardware architecture, building on the existing hardware-friendly T-GIST algorithm. The proposed algorithm reduces the SRAM size for storing tensors within the chip to that needed for storing matrices. With tensor operations such as permutation and commutative law, the proposed algorithm further reduces data access by 53% and operation number by 20% when compared to the direct tensor unfolding of the existing algorithm. Finally, the processor is implemented using the TSMC 28 nm process, achieving a post-layout clock speed of 257 MHz, a chip area of 1.01 square millimeters, a throughput of 2.73 results per second for a 32×32×32×32 tensor, and the reconstruction time of 366 milliseconds.

    1 Introduction 1 1.1 Terahertz Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Image Scanning Methodologies . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Tensor Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 THz-TDS Single-Pixel Imaging Systems . . . . . . . . . . . . . . . . . . 12 1.5.1 THz-TDS Single-Pixel Imaging Systems . . . . . . . . . . . . . . 12 1.5.2 3-D Tensor Compressive Sensing Method . . . . . . . . . . . . . . 14 1.6 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Proposed Material Analysis Method using THz Spectroscopy 17 2.1 A Modified Model of Refractive Index and Thickness Estimation . . . . . 17 2.2 Estimation System Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Proposed Sub-Block Sensing Strategy . . . . . . . . . . . . . . . . . . . . 24 3 Proposed Tensor Unfolding with Permutation Generalized Iterative Soft-Thresholding (TUP-GIST) 31 3.1 Property of Tensor Operations . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Tensor Unfolding Generalized Iterative Soft-Thresholding (TU-GIST) . . 36 3.3 Tensor Unfolding with Permutation Generalized Iterative Soft-Thresholding (TUP-GIST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Analysis of TU-GIST and TUP-GIST . . . . . . . . . . . . . . . . . . . . 43 4 Simulation Results 45 4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 Proposed VLSI Design and Implementation Results 55 5.1 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.1 Hardware Specification . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.2 Modules of The Proposed Hardware . . . . . . . . . . . . . . . . . 55 5.1.3 Timing Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.4 Fixed-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6 Conclusion and Future Work 75 References 77

    [1] S.-H. Chen, “A Real-time Refractive Index Estimation Method using 3-D Tensor Compressive Sensing Terahertz Single-Pixel Imaging System and Tensor Generalized Iterative Soft-Thresholding Reconstruction Processor,” Master’s thesis, National Tsing Hua University, Taiwan, 2024.
    [2] P. H. Siegel, “Terahertz technology,” IEEE Transactions on microwave theory and techniques, vol. 50, no. 3, pp. 910–928, 2002.
    [3] Q. Mao, Y. Zhu, C. Lv, Y. Lu, X. Yan, S. Yan, and J. Liu, “Convolutional neural network model based on terahertz imaging for integrated circuit defect detections,” Optics express, vol. 28, no. 4, pp. 5000–5012, 2020.
    [4] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semiconductor science and technology, vol. 20, no. 7, p. S266, 2005.
    [5] A. Unal, “Real-time passive MMW/THz imaging system for concealed weapon detection,” Journal of Optics, pp. 1–16, 2024.
    [6] M. B. Heydari and M. H. V. Samiei, “Analytical study of chiral multi-layer structures containing graphene sheets for THz applications,” IEEE Transactions on Nanotechnology, vol. 19, pp. 653–660, 2020
    [7] J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-H¨onninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, pp. 382–411, 2014.
    [8] L. Wang, “Terahertz imaging for breast cancer detection,” Sensors, vol. 21, no. 19, p. 6465, 2021.
    [9] M. Gezimati and G. Singh, “Advances in terahertz technology for cancer detection applications,” Optical and Quantum Electronics, vol. 55, no. 2, p. 151, 2023.
    [10] Z. Vafapour, A. Keshavarz, and H. Ghahraloud, “The potential of terahertz sensing for cancer diagnosis,” Heliyon, vol. 6, no. 12, 2020.
    [11] A. Veeraselvam, G. N. A. Mohammed, K. Savarimuthu, J. Anguera, J. C. Paul, and R. K. Krishnan, “Refractive index-based terahertz sensor using graphene for material characterization,” Sensors, vol. 21, no. 23, p. 8151, 2021.
    [12] M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1658–1665, 2007.
    [13] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE transactions on microwave theory and techniques, vol. 52, no. 10, pp. 2438–2447, 2004.
    [14] L. Yang, T. Guo, X. Zhang, S. Cao, and X. Ding, “Toxic chemical compound detection by terahertz spectroscopy: a review,” Reviews in Analytical Chemistry,
    vol. 37, no. 3, p. 20170021, 2018.
    [15] A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Optoelectronics review, vol. 19, no. 3, pp. 346–404, 2011.
    [16] I. Escorcia, J. Grant, J. Gough, and D. R. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Optics letters, vol. 41, no. 14, pp. 3261–3264, 2016.
    [17] W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters, vol. 93, no. 12, 2008.
    [18] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83–91, 2008.
    [19] A. Jerri, “The Shannon sampling theorem—Its various extensions and applications: A tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596, 1977.
    [20] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
    [21] E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” Comptes rendus. Mathematique, vol. 346, no. 9-10, pp. 589–592, 2008.
    [22] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive approximation,
    vol. 28, pp. 253–263, 2008.
    [23] J. Wang, S. Kwon, and B. Shim, “Generalized Orthogonal Matching Pursuit,” IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6202–6216, 2012.
    [24] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.
    [25] M. F. Duarte and R. G. Baraniuk, “Kronecker compressive sensing,” IEEE Transactions on Image Processing, vol. 21, no. 2, pp. 494–504, 2011.
    [26] W.-C. Wang, J.-C. Wang, Y.-C. Hung, S.-H. Yang, and Y.-H. Huang, “TensorBased Terahertz Compressive Sensing Imaging,” in 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2021, pp. 1–2.
    [27] C. F. Caiafa and A. Cichocki, “Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases,” Neural Computation, vol. 25, no. 1, pp. 186–220, 2013.
    [28] L. Zanotto, R. Piccoli, J. Dong, D. Caraffini, R. Morandotti, and L. Razzari, “Timedomain terahertz compressive imaging,” Optics Express, vol. 28, no. 3, pp. 3795–3802, 2020.
    [29] J. Neu and C. A. Schmuttenmaer, “Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS),” Journal of Applied Physics, vol. 124, no. 23,
    2018.
    [30] A. Travinsky, D. Vorobiev, Z. Ninkov, A. Raisanen, M. A. Quijada, S. A. Smee, J. A. Pellish, T. Schwartz, M. Robberto, S. Heap et al., “Evaluation of digital micromirror devices for use in space-based multiobject spectrometer application,” Journal of Astronomical Telescopes, Instruments, and Systems, vol. 3, no. 3, pp. 035 003–035 003, 2017.
    [31] S.-H. Chen, C.-M. Mai, Y.-C. Hung, S.-H. Yang, and Y.-H. Huang, “3D Tensor Compressive Sensing THz Single-Pixel Imaging for Refractive Index Estimation,” in 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves
    (IRMMW-THz). IEEE, 2023, pp. 1–2.
    [32] L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE Journal of selected topics in quantum electronics, vol. 2, no. 3, pp. 739–746, 1996.
    [33] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.
    [34] Y. Ji, Q. Wang, X. Li, and J. Liu, “A survey on tensor techniques and applications in machine learning,” IEEE Access, vol. 7, pp. 162 950–162 990, 2019.
    [35] R. I. Stantchev, X. Yu, T. Blu, and E. Pickwell-MacPherson, “Real-time terahertz imaging with a single-pixel detector,” Nature communications, vol. 11, no. 1, p. 2535, 2020.
    [36] Y.-C. Lin, C. Park, W. Zhao, N. Sun, Y. Chae, and C.-H. Yang, “A 26.4mw, 18.6ms/s image reconstruction processor for iot compressive sensing,” in 2023
    IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2023, pp. 1–2.
    [37] J.-W. Jhang and Y.-H. Huang, “A high-SNR projection-based atom selection OMP processor for compressive sensing,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 12, pp. 3477–3488, 2016.
    [38] P. Maechler, C. Studer, D. E. Bellasi, A. Maleki, A. Burg, N. Felber, H. Kaeslin, and R. G. Baraniuk, “VLSI design of approximate message passing for signal restoration and compressive sensing,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 3, pp. 579–590, 2012

    QR CODE