研究生: |
鄭宇婷 Cheng, Yu-Ting |
---|---|
論文名稱: |
以硝酸鉛水溶液為前驅液之多重離子鈣鈦礦太陽能電池研究 Compositional Engineering on Perovskite Solar Cells Fabricated Using Lead-Nitrate Aqueous Precursors |
指導教授: |
衛子健
Wei, Tzu-Chien |
口試委員: |
童永樑
劉振良 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、硝酸鉛水溶液前驅液 、多重離子鈣鈦礦 |
外文關鍵詞: | Perovskite Solar Cells, Lead-Nitrate Aqueous Precursors, Compositional Engineering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要建構在低毒性的硝酸鉛水溶液製作鈣鈦礦太陽能電池製程上,進一步研究多重離子對於鈣鈦礦生成以及元件表現的影響。本實驗室過去已成功研發出以硝酸鉛水溶液作為前驅液,取代高毒性溶劑二甲基甲醯胺製備鈣鈦礦太陽能電池的技術,以此為基礎,透過相關研究與製程創新,使多種陽離子和陰離子嵌入以低毒性硝酸鉛所合成的鈣鈦礦結構中。
首先,我們發現環境濕度對於硝酸鉛水溶液旋轉塗佈於多孔層/導電玻璃基板表面有顯著影響,降低環境濕度能增加基板的表面親水性,對於薄膜形態有顯著改善,減緩旋轉塗佈硝酸鉛水溶液時產生的薄膜島狀分布不連續的問題。而提升硝酸鉛水溶液濃度則有助於形成較厚的鈣鈦礦薄膜,增加吸光度以提高光電流。除此之外,透過紫外光-可見光光譜儀量測,本研究亦發現製程中異丙醇潤洗可加速鈣鈦礦晶體的生成。
接下來在製備多重陽離子鈣鈦礦中,將甲脒和溴離子添加至浸泡溶液中進行反應。透過低真空可變壓掃描式電子顯微鏡及X光繞射儀分析,我們發現加入甲脒離子會干擾擴散時的中間離子交換,加劇了鈣鈦礦晶體形成的障礙並導致較為粗糙的表面形貌;而添加溴離子會加速從硝酸鉛到鈣鈦礦的轉化速度,進而引發溶解再結晶的問題,導致鈣鈦礦覆膜性不佳進而影響效率。針對形貌問題,製程設計以甲胺蒸氣處理對其形貌進行修補,改善鈣鈦礦薄膜品質以提升元件效率。
這是首次研究以硝酸鉛水溶液為前驅液,混合甲脒和溴離子製備多重離子鈣鈦礦應用於導電玻璃基板上的製程。通過此低毒性技術,多重離子鈣鈦礦FA0.1MA0.9I3及FA0.1MA0.9(I0.9Br0.1)3最佳元件性能分別能夠達到16.0%及14.7%的光電轉換效率。
This study focuses on compositional engineering in novel aqueous lead nitrate (Pb(NO3)2) precursor system. Specifically, multiple cations and anions are introduced into MAPbI3 perovskite structure which is synthesized via a low-toxicity lead nitrate protocol, which is seldom studied.
In the beginning, we discover that relative humidity of environment has a strong influence on the wettability between the mesoporous TiO2 and hydrophilic Pb(NO3)2. Lower the relative humidity would improve the film morphology as the resultant film appears from islandish distribution to uniform thin film. Second, the thickness of the perovskite film was found to increase with the concentration of Pb(NO3)2 aqueous precursor, resulting in improvements to JSC with higher light absorption. Third, through UV-Vis analysis, it is discovered that isopropanol rinsing can increase the crystal converting rate from Pb(NO3)2 to MAPbI3.
In the following perovskite formation, FA+ and Br- ions are added to the multiple-cycle dipping bath, and through SEM and XRD investigations, we discover that adding FA+ ions would disturb intermediate ion exchange during diffusion, intensifiing the hindrance of crystallization and results in poor surface morphology. Moreover, the addition of Br- ions would greatly accelerate crystal conversion dynamics from Pb(NO3)2 to perovskite, causing the problem of dissolution-recrystallization and coarsening the film surface. Tailored to the poor film morphology, methylamine gas treatment is applied. Through the healing process, a highly uniform and highly crystalline film with enhanced photovoltaic performance was obtained.
This is the first study taking insight into the crystal formation on mixed ion perovskite system in aqueous Pb(NO3)2 protocol of mesoporous TiO2 scaffold-based perovskite solar cells. Currently. the best device performance of compositiontailored hybrid perovskite FA0.1MA0.9I3 and FA0.1MA0.9(I0.9Br0.1)3 shows 16.0% and 14.7% photo-electronic conversion efficiency by using the low toxicity process.
1. Fritts, C.E., On a new form of selenium cell, and some electrical discoveries made by its use. American Journal of Science, 1883(156): p. 465-472.
2. Chapin, D.M., C. Fuller, and G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954. 25(5): p. 676-677.
3. NREL. Available from: https://www.nrel.gov/pv/cell-efficiency.html.
4. Kim, H.-S., S.H. Im, and N.-G. Park, Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C, 2014. 118(11): p. 5615-5625.
5. Kieslich, G., S. Sun, and A.K. Cheetham, Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chemical Science, 2014. 5(12): p. 4712-4715.
6. Stoumpos, C.C. and M.G. Kanatzidis, The renaissance of halide perovskites and their evolution as emerging semiconductors. Accounts of Chemical Research, 2015. 48(10): p. 2791-2802.
7. Sun, S., et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014. 7(1): p. 399-407.
8. Baikie, T., et al., Synthesis and crystal chemistry of the hybrid perovskite CH3NH3PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 2013. 1(18): p. 5628-5641.
9. Mitzi, D.B., K. Chondroudis, and C.R. Kagan, Organic-inorganic electronics. IBM Journal of Research and Development, 2001. 45(1): p. 29-45.
10. Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
11. Stranks, S.D. and H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 2015. 10(5): p. 391-402.
12. Kojima, A., et al. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds. 210th ECS Meeting. 2006.
13. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
14. Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012. 2(1): p. 1-7.
15. Lee, M.M., et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012. 338(6107): p. 643-647.
16. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398.
17. Song, Z., et al., Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016. 6(2): p. 022001.
18. Cui, X.-P., et al., Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells. Chemical Communications, 2015. 51(8): p. 1457-1460.
19. Popov, G., et al., Scalable route to the fabrication of CH3NH3PbI3 perovskite thin films by electrodeposition and vapor conversion. ACS Omega, 2016. 1(6): p. 1296-1306.
20. Liang, C., et al., Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Applied Surface Science, 2017. 391: p. 337-344.
21. Sun, J., et al., Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy, 2018. 49: p. 163-171.
22. Jiang, Q., X. Zhang, and J. You, SnO2: a wonderful electron transport layer for perovskite solar cells. Small, 2018. 14(31): p. 1801154.
23. Zhu, Z., et al., Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron‐transporting layer. Advanced Materials, 2016. 28(30): p. 6478-6484.
24. Dong, Q., et al., Insight into perovskite solar cells based on SnO2 compact electron-selective layer. The Journal of Physical Chemistry C, 2015. 119(19): p. 10212-10217.
25. Son, D.-Y., et al., 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. The Journal of Physical Chemistry C, 2014. 118(30): p. 16567-16573.
26. Kumar, M.H., et al., Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 2013. 49(94): p. 11089-11091.
27. Heo, J.H., et al., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015. 8(5): p. 1602-1608.
28. Liu, D., M.K. Gangishetty, and T.L. Kelly, Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2014. 2(46): p. 19873-19881.
29. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
30. Im, J.-H., et al., Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Research Letters, 2012. 7(1): p. 353.
31. Heo, J.H., et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013. 7(6): p. 486-491.
32. Dualeh, A., et al., Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells. Advanced Functional Materials, 2014. 24(21): p. 3250-3258.
33. Williams, S.T., et al., Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano, 2014. 8(10): p. 10640-10654.
34. Eperon, G.E., et al., Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 2014. 24(1): p. 151-157.
35. Jeon, N.J., et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014. 13(9): p. 897-903.
36. Xiao, M., et al., A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie International Edition, 2014. 53(37): p. 9898-9903.
37. Ahn, N., et al., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 2015. 137(27): p. 8696-8699.
38. Bi, D., et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016. 1(10): p. 1-5.
39. Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology, 2014. 9(11): p. 927-932.
40. Cao, D.H., et al., Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Materials, 2014. 2(9): p. 091101.
41. Wakamiya, A., et al., Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chemistry Letters, 2014. 43(5): p. 711-713.
42. Shao, Z., et al., A Scalable Methylamine Gas Healing Strategy for High‐Efficiency Inorganic Perovskite Solar Cells. Angewandte Chemie International Edition, 2019. 58(17): p. 5587-5591.
43. Gurina, G. and K. Savchenko, Intercalation and formation of complexes in the system of lead (II) iodide–ammonia. Journal of Solid State Chemistry, 2004. 177(3): p. 909-915.
44. Zhang, J., et al., Layered ultrathin PbI2 single crystals for high sensitivity flexible photodetectors. Journal of Materials Chemistry C, 2015. 3(17): p. 4402-4406.
45. Raga, S.R., L.K. Ono, and Y. Qi, Rapid perovskite formation by CH3NH2 gas-induced intercalation and reaction of PbI2. Journal of Materials Chemistry A, 2016. 4(7): p. 2494-2500.
46. Zhang, T., et al., A general non- CH3NH3X (X= I, Br) one-step deposition of CH3NH3PbX3 perovskite for high performance solar cells. Journal of Materials Chemistry A, 2016. 4(9): p. 3245-3248.
47. Pang, S., et al., Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid–gas interaction between HPbI3- CH3NH3 precursor pair. Journal of the American Chemical Society, 2016. 138(3): p. 750-753.
48. Conings, B., et al., Structure–property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells. ACS Applied Materials & Interfaces, 2017. 9(9): p. 8092-8099.
49. Jiang, Y., et al., Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells. Materials Horizons, 2016. 3(6): p. 548-555.
50. Zhang, M.-J., et al., Carrier transport improvement of CH3NH3PbI3 film by methylamine gas treatment. ACS Applied Materials & Interfaces, 2016. 8(45): p. 31413-31418.
51. Chang, Y., et al., CH3NH2 gas induced (110) preferred cesium-containing perovskite films with reduced PbI6 octahedron distortion and enhanced moisture stability. Journal of Materials Chemistry A, 2017. 5(10): p. 4803-4808.
52. Lian, J., et al., Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. Journal of Materials Chemistry A, 2015. 3(17): p. 9146-9151.
53. Jacobs, D.L. and L. Zang, Thermally induced recrystallization of MAPbI3 perovskite under methylamine atmosphere: an approach to fabricating large uniform crystalline grains. Chemical Communications, 2016. 52(71): p. 10743-10746.
54. Haruyama, J., et al., Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. The Journal of Physical Chemistry Letters, 2014. 5(16): p. 2903-2909.
55. Liang, K., D.B. Mitzi, and M.T. Prikas, Synthesis and characterization of organic− inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chemistry of Materials, 1998. 10(1): p. 403-411.
56. Rühle, S., Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 2016. 130: p. 139-147.
57. Noh, J.H., et al., Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letters, 2013. 13(4): p. 1764-1769.
58. Anaya, M., et al., ABX3 perovskites for tandem solar cells. Joule, 2017. 1(4): p. 769-793.
59. Niu, G., et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2014. 2(3): p. 705-710.
60. Ji, F., et al., A balanced cation exchange reaction toward highly uniform and pure phase FA1− xMAxPbI3 perovskite films. Journal of Materials Chemistry A, 2016. 4(37): p. 14437-14443.
61. Rehman, W., et al., Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy & Environmental Science, 2017. 10(1): p. 361-369.
62. Yang, W.S., et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017. 356(6345): p. 1376-1379.
63. Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
64. Stoumpos, C.C., C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013. 52(15): p. 9019-9038.
65. Koh, T.M., et al., Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. The Journal of Physical Chemistry C, 2014. 118(30): p. 16458-16462.
66. Pellet, N., et al., Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting. Angewandte Chemie, 2014. 126(12): p. 3215-3221.
67. Ryu, S., et al., Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy & Environmental Science, 2014. 7(8): p. 2614-2618.
68. McMeekin, D.P., et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016. 351(6269): p. 151-155.
69. Kulbak, M., D. Cahen, and G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. The Journal of Physical Chemistry Letters, 2015. 6(13): p. 2452-2456.
70. Eperon, G.E., et al., Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 2015. 3(39): p. 19688-19695.
71. Liang, J., et al., All-inorganic perovskite solar cells. Journal of the American Chemical Society, 2016. 138(49): p. 15829-15832.
72. Kulbak, M., et al., Cesium enhances long-term stability of lead bromide perovskite-based solar cells. The Journal of Physical Chemistry Letters, 2016. 7(1): p. 167-172.
73. Li, Z., et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 2016. 28(1): p. 284-292.
74. Tsai, C.-M., et al., Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. Angewandte Chemie International Edition, 2017. 56(44): p. 13819-13823.
75. Noel, N.K., et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014. 7(9): p. 3061-3068.
76. Hao, F., et al., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014. 8: p. 489.
77. Song, T.-B., et al., Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Letters, 2017. 2(4): p. 897-903.
78. Slavney, A.H., et al., A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American Chemical Society, 2016. 138(7): p. 2138-2141.
79. Lehner, A.J., et al., Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A= K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics. Chemistry of Materials, 2015. 27(20): p. 7137-7148.
80. Singh, T., et al., Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)Bi2I9 for photovoltaic applications. ACS Applied Materials & Interfaces, 2016. 8(23): p. 14542-14547.
81. Kamat, P.V., J. Bisquert, and J. Buriak, Lead-free perovskite solar cells. ACS Energy Letters, 2017. 2(4): p. 904-905.
82. Kumar, M.H., et al., Lead‐free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Advanced Materials, 2014. 26(41): p. 7122-7127.
83. Saparov, B., et al., Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chemistry of Materials, 2015. 27(16): p. 5622-5632.
84. Fang, X., et al., Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature. Applied Physics Letters, 2016. 108(7): p. 071109.
85. Pool, V.L., et al., Chlorine in PbCl2-derived hybrid-perovskite solar absorbers. Chemistry of Materials, 2015. 27(21): p. 7240-7243.
86. Zhou, H., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546.
87. Gong, J., et al., Divalent anionic doping in perovskite solar cells for enhanced chemical stability. Advanced Materials, 2018. 30(34): p. 1800973.
88. Hsieh, T.-Y., et al., Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chemical Communications, 2015. 51(68): p. 13294-13297.
89. Le, Q.V., et al., Control of the crystal growth shape in CH3NH3PbBr3 perovskite materials. Journal of Nanoscience and Nanotechnology, 2017. 17(11): p. 8169-8174.
90. Sun, Y., et al., Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Scientific Reports, 2017. 7(1): p. 1-7.
91. Kim, M.K., et al., Effective control of crystal grain size in CH3NH3PbI3 perovskite solar cells with a pseudohalide Pb(SCN)2 additive. CrystEngComm, 2016. 18(32): p. 6090-6095.
92. Aldibaja, F.K., et al., Effect of different lead precursors on perovskite solar cell performance and stability. Journal of Materials Chemistry A, 2015. 3(17): p. 9194-9200.
93. Scailteur, V. and R. Lauwerys, Dimethylformamide (DMF) hepatotoxicity. Toxicology, 1987. 43(3): p. 231-238.
94. Mraz, J., et al., Investigation of the mechanistic basis of N, N-dimethylformamide toxicity. Metabolism of N, N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1. Chemical Research in Toxicology, 1993. 6(2): p. 197-207.
95. Babayigit, A., et al., Toxicity of organometal halide perovskite solar cells. Nature Materials, 2016. 15(3): p. 247.
96. Jain, S.M., T. Edvinsson, and J.R. Durrant, Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent. Communications Chemistry, 2019. 2(1): p. 1-7.
97. Bu, T., et al., Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 2017. 7(20): p. 1700576.
98. Nie, H.-Y., et al., Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force. Applied Surface Science, 1999. 144: p. 627-632.
99. Xiao, Z., et al., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014. 7(8): p. 2619-2623.
100. Fu, Y., et al., Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. Journal of the American Chemical Society, 2015. 137(17): p. 5810-5818.
101. Hsieh, T.-Y., et al., Crystal growth and dissolution of methylammonium lead iodide perovskite in sequential deposition: correlation between morphology evolution and photovoltaic performance. ACS Applied Materials & Interfaces, 2017. 9(10): p. 8623-8633.
102. Schlipf, J., et al., A closer look into two-step perovskite conversion with X-ray scattering. The Journal of Physical Chemistry Letters, 2015. 6(7): p. 1265-1269.
103. Jiang, C., et al., Improvement of CH3NH3PbI3 formation for efficient and better reproducible mesoscopic perovskite solar cells. ACS Applied Materials & Interfaces, 2015. 7(44): p. 24726-24732.
104. Hsieh, T.-Y., et al., Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials Today Energy, 2019. 14: p. 100125.
105. Xu, Y., et al., Efficient hybrid mesoscopic solar cells with morphology-controlled CH3NH3PbI3-xClx derived from two-step spin coating method. ACS Applied Materials & Interfaces, 2015. 7(4): p. 2242-2248.
106. Docampo, P., et al., Solution deposition‐conversion for planar heterojunction mixed halide perovskite solar cells. Advanced Energy Materials, 2014. 4(14): p. 1400355.
107. Hsieh, T.Y., et al., Exceptional long electron lifetime in methylammonium lead iodide perovskite solar cell made from aqueous lead nitrate precursor. Advanced Functional Materials, 2020. 30(10): p. 1909644.
108. Feng, Y., et al., Solution-processed perovskite solar cells using environmentally friendly solvent system. Thin Solid Films, 2017. 636: p. 639-643.
109. Sveinbjörnsson, K., et al., Preparation of mixed-ion and inorganic perovskite films using water and isopropanol as solvents for solar cell applications. Sustainable Energy & Fuels, 2018. 2(3): p. 606-615.
110. Neukom, M., et al., Opto-electronic characterization of third-generation solar cells. Science and Technology of Advanced Materials, 2018. 19(1): p. 291-316.
111. Leijtens, T., et al., Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy & Environmental Science, 2016. 9(11): p. 3472-3481.
112. Zhai, P., et al., Toward clean production of plastic perovskite solar cell: Composition-tailored perovskite absorber made from aqueous lead nitrate precursor. Nano Energy, 2019. 65: p. 104036.
113. Zarick, H.F., et al., Mixed halide hybrid perovskites: a paradigm shift in photovoltaics. Journal of Materials Chemistry A, 2018. 6(14): p. 5507-5537.
114. Yoon, S.J., K.G. Stamplecoskie, and P.V. Kamat, How lead halide complex chemistry dictates the composition of mixed halide perovskites. The Journal of Physical Chemistry Letters, 2016. 7(7): p. 1368-1373.
115. Xu, F., et al., Mixed cation hybrid lead halide perovskites with enhanced performance and stability. Journal of Materials Chemistry A, 2017. 5(23): p. 11450-11461.
116. Babayigit, A., et al., Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Scientific Reports, 2016. 6(1): p. 1-11.
117. Gescher, A., Metabolism of N, N-dimethylformamide: key to the understanding of its toxicity. Chemical research in toxicology, 1993. 6(3): p. 245-251.
118. Aristidou, N., et al., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie, 2015. 127(28): p. 8326-8330.
119. Yang, J., et al., Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015. 9(2): p. 1955-1963.
120. Conings, B., et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 2015. 5(15): p. 1500477.
121. Hailegnaw, B., et al., Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. The Journal of Physical Chemistry Letters, 2015. 6(9): p. 1543-1547.
122. Dong, X., et al., Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. Journal of Materials Chemistry A, 2015. 3(10): p. 5360-5367.
123. Clever, H.L. and F.J. Johnston, The solubility of some sparingly soluble lead salts: an evaluation of the solubility in water and aqueous electrolyte solution. Journal of Physical and Chemical Reference Data, 1980. 9(3): p. 751-784.
124. Dualeh, A., et al., Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chemistry of Materials, 2014. 26(21): p. 6160-6164.
125. Son, D.-Y., et al., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nature Energy, 2016. 1(7): p. 1-8.
126. Leijtens, T., et al., Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A, 2017. 5(23): p. 11483-11500.
127. Jena, A.K., A. Kulkarni, and T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019. 119(5): p. 3036-3103.
128. Cheng, Z. and J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010. 12(10): p. 2646-2662.
129. Raga, S.R., et al., Application of methylamine gas in fabricating organic–inorganic hybrid perovskite solar cells. Energy Technology, 2017. 5(10): p. 1750-1761.
130. Zhang, M.-J., et al., Carrier transport improvement of CH3NH3PbI3 film by methylamine gas treatment. ACS Applied Materials & Interfaces, 2016. 8(45): p. 31413-31418.
131. Zhou, Z., et al., Methylamine‐gas‐induced defect‐healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angewandte Chemie, 2015. 127(33): p. 9841-9845.
132. Yang, J.-a., et al., Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. Journal of Materials Chemistry C, 2019. 7(35): p. 10724-10742