研究生: |
楊順宇 Yang, Shun-Yu |
---|---|
論文名稱: |
基於材料性質出發之內藏式永磁同步電機優化設計 Optimal Design and Analysis of Internal Permanent Magnet Synchronous Motors Based on Material Properties |
指導教授: |
王培仁
Wang, Pei-Jen |
口試委員: |
茆尚勳
徐勝均 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 車用電機 、內置式永磁同步電機 、鈷鋼 |
外文關鍵詞: | Automotive Motor, IPM Motor, Cobalt Steel |
相關次數: | 點閱:51 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自2020年來受疫情影響,各行各業都大受打擊,但是在這大環境裡,新能源電動車產業仍是蓬勃發展。電動車產業三電系統中最重要的驅動電機,自然成為學術暨產業界研究的重心。總而言之,電動車輛皆須藉由驅動電機將儲存電能轉化為推動車輛的機械能。故而如何適當地搭配車輛及驅動電機成為設計工程師的要務,驅動電機的動態性能更是決定電動車輛的運轉效率及里程的核心組件。
本論文針對內藏式永磁同步驅動電機進行研究及分析,實因此類電機已成為多數電動車輛的主要動力源。論文內容將以世上第一個大量生產的混和動力房車Toyota Prius驅動電機作為研究範例,討論設計參數及變更材料條件的影響。研究工具以商用電磁分析工程軟體分析為主,配合美國橡樹嶺國家實驗室的實驗數據予以驗證,並針對不同磁材料的規格及性質,研究各材料應用於鐵芯製作對驅動電機性能之影響。
最後,基於不同材料的電磁特性,透過商用軟體JMAG進行多參數最佳化,以優化範例電機的尺寸設計。我們合理探討V型和幅條式轉子對電機性能的影響。討論在不同材料下的力矩輸出能力、功率密度提升幅度及成本之間的相互關係。這些研究成果將有助於進一步提升電動車的性能與效率,推動電動車技術的發展與應用。
Since 2020, the pandemic has severely impacted various industries, but the electric vehicle (EV) industry has continued to thrive. Among EV components, the drive motor, crucial for converting electrical energy into mechanical energy, is a major research focus. Proper matching of vehicles and drive motors is vital, as motor performance determines EV efficiency and range.
This thesis studies interior permanent magnet synchronous drive motors, the primary power source for most EVs. Using the Toyota Prius motor as an example, it examines the impact of design parameters and material changes. The research employs commercial electromagnetic analysis software, verified by Oak Ridge National Laboratory data, to assess different magnetic materials' effects on motor performance.
Finally, multi-parameter optimization with JMAG software is used to optimize the motor's design, exploring the influence of V-shaped and bar-shaped rotors. The study discusses the relationships between torque output, power density, and cost under different materials. These findings aim to enhance EV performance and efficiency, promoting the development and application of EV technology.
[1] Z. Cao, A. Mahmoudi, S. Kahourzade, and W. L. Soong, "An Overview of Electric Motors for Electric Vehicles," presented at the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), 2021.
[2] X. D. Xue, K. W. E. Cheng, and N. C. Cheung, "Selection of eLECTRIC mOTOR dRIVES for electric vehicles," in 2008 Australasian Universities Power Engineering Conference, 14-17 Dec. 2008 2008, pp. 1-6.
[3] O. D. Momoh and M. O. Omoigui, "An overview of hybrid electric vehicle technology," in 2009 IEEE Vehicle Power and Propulsion Conference, 7-10 Sept. 2009 2009, pp. 1286-1292, doi: 10.1109/VPPC.2009.5289703.
[4] G. Du, N. Li, Q. Zhou, W. Gao, L. Wang, and T. Pu, "Multi-Physics Comparison of Surface-Mounted and Interior Permanent Magnet Synchronous Motor for High-Speed Applications," Machines, vol. 10, no. 8, 2022, doi: 10.3390/machines10080700.
[5] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, "Comparison of Induction and PM Synchronous Motor Drives for EV Application Including Design Examples," IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2322-2332, 2012, doi: 10.1109/tia.2012.2227092.
[6] R. Thomas, L. Garbuio, L. Gerbaud, and H. Chazal, "Modeling and design analysis of the Tesla Model S induction motor," in 2020 International Conference on Electrical Machines (ICEM), 23-26 Aug. 2020 2020, vol. 1, pp. 495-501, doi: 10.1109/ICEM49940.2020.9270646.
[7] R. Bhattacharjee, "Switched reluctance motor applications to EV and HEV: Torque control issues," in 2014 1st International Conference on Non Conventional Energy (ICONCE 2014), 16-17 Jan. 2014 2014, pp. 324-328, doi: 10.1109/ICONCE.2014.6808735.
[8] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, "Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications," IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 245-254, 2015, doi: 10.1109/TTE.2015.2470092.
[9] A. Krings, A. Boglietti, A. Cavagnino, and S. Sprague, "Soft Magnetic Material Status and Trends in Electric Machines," IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2405-2414, 2017, doi: 10.1109/TIE.2016.2613844.
[10] A.Perrelin, Comptes rendus hebdomadaires des séances de l'Académie des sciences. Paris: publiés avec le concours du Centre national de la recherche scientifique par MM. les secrétaires perpétuels, 1873, p. 561.
[11] W. Tong, S. Dai, S. Wu, and R. Tang, "Performance Comparison Between an Amorphous Metal PMSM and a Silicon Steel PMSM," IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 1-5, 2019, doi: 10.1109/tmag.2019.2900531.
[12] N. Boubaker, D. Matt, P. Enrici, F. Nierlich, and G. Durand, "Measurements of Iron Loss in PMSM Stator Cores Based on CoFe and SiFe Lamination Sheets and Stemmed From Different Manufacturing Processes," IEEE Transactions on Magnetics, vol. 55, no. 1, pp. 1-9, 2019, doi: 10.1109/tmag.2018.2877995.
[13] M. Centner, R. Hanitsch, and U. Schafer, "Comparison of high-speed induction motors employing cobalt-iron and silicon electrical steel," in 2008 18th International Conference on Electrical Machines, 6-9 Sept. 2008 2008, pp. 1-6, doi: 10.1109/ICELMACH.2008.4799929.
[14] X. Liu, H. Chen, J. Zhao, and A. Belahcen, "Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3533-3545, 2016, doi: 10.1109/tie.2016.2524415.
[15] M. Kamiya, "Development of Traction Drive Motors for the Toyota Hybrid System," IEEJ Transactions on Industry Applications, vol. 126, no. 4, pp. 473-479, 2006, doi: 10.1541/ieejias.126.473.
[16] H. Jin, R. Jin-Wook, K. Byeong-Woo, and K. Gyu-Hong, "Vibration Reduction of IPM-Type BLDC Motor Using Negative Third Harmonic Elimination Method of Air-Gap Flux Density," IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1300-1309, 2011, doi: 10.1109/tia.2011.2128850.
[17] M. Muthusamy, J. Hendershot, and P. Pillay, "Design of a Spoke Type PMSM With SMC Stator Core for Traction Applications," IEEE Transactions on Industry Applications, vol. 59, no. 2, pp. 1418-1436, 2023, doi: 10.1109/TIA.2022.3223636.
[18] D. Jiles, Introduction to magnetism and magnetic materials, 2nd ed. London ;: Chapman and Hall, 1998.
[19] H.-K. Kim and J. Hur, "Magnetic Field Analysis of Irreversible Demagnetization in Brushless DC Motor According to the Dynamic and Static Characteristic," IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, 2015, doi: 10.1109/tmag.2015.2448933.
[20] 唐任遠, 現代永磁電機理論與設計. 中國: 機械工業出版社, 1997, p. 473.
[21] T. A. Lipo, Introduction to AC machine design, 1st ed. (IEEE Press series on power engineering). Hoboken, NJ: John Wiley & Sons, 2017.
[22] 寿太郎竹内 and 正司西方, 大学課程 電機設計学 改訂3版. オーム社, 2016.
[23] Z. Q. Zhu, D. Liang, and K. Liu, "Online Parameter Estimation for Permanent Magnet Synchronous Machines: An Overview," IEEE Access, vol. 9, pp. 59059-59084, 2021, doi: 10.1109/access.2021.3072959.
[24] J. S. Hsu et al., "Report on Toyota/Prius Motor Torque Capability, Torque Property, No-Load Back EMF, and Mechanical Losses, Revised May 2007," United States, 2007-05-31 2007. [Online]. Available: https://www.osti.gov/biblio/921782; https://www.osti.gov/servlets/purl/921782
[25] T. A. Burress et al., "Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System," Office of Scientific and Technical Information (OSTI), 2011. [Online]. Available: https://dx.doi.org/10.2172/1007833
[26] J. S. Hsu, "Report on Toyota Prius Motor Thermal Management," United States, 2005-02-11 2005. [Online]. Available: https://www.osti.gov/biblio/885987; https://www.osti.gov/servlets/purl/885987