簡易檢索 / 詳目顯示

研究生: 洪崧富
Hong, Song-Fu
論文名稱: 以化學浴沈積法製備硫化鎘緩衝層並應用在銅銦鎵硒太陽能電池之研究
The Study on Cadmium Sulfide Buffer Layer Prepared by Chemical Bath Deposition on CIGS Solar Cell Application
指導教授: 賴志煌
Lai, Chih-Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 122
中文關鍵詞: 硫化鎘緩衝層銅銦鎵硒太陽能電池
外文關鍵詞: cadmium sulfide, buffer layer, CIGS, solar cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Copper indium gallium diselenide (CIGS), which is cheap and has high efficiency, is one of the potential solar cells. In addition to CIGS absorber layer, the study on buffer layer and interface is also important for photovoltaic application. It means the fabrication of buffer layer much influences junction properties and cell performance. Recently, CIGS solar cell with cadmium sulfur buffer layer fabricated by chemical bath deposition (CBD) has the highest efficiency. Therefore, not only film properties but also interface quality are improved by CBD process.
    In this thesis, effects of CBD process on CIGS solar cell are focused. It is divided into three parts. In the first part, effects of CBD process on CdS film properties are discussed. Optimum quality of CdS film is obtained by controlling precursor concentration. In the second part, effects of CBD process on interface modification (surface etching and cadmium diffusion) are discussed. Interface could be improved by the enhancement of these modifications. In the final part, by taking two different effects above mentioned into consideration, adequate CdS buffer layer for CIGS solar cell application could be prepared by depositing CdS buffer layer on sputtering CIGS film prepared by quaternary compound target. In this circumstance, nearly 7% efficiency is demonstrated.


    Chapter 1 Introduction to Solar Cells 1 1.1 The Solution to Energy Issue: Photovoltaic 1 1.2 Different Kinds of Solar Cell 2 1.2.1 Bulk Type Solar Cells (First Generation) 3 1.2.2 Gallium Arsenide Solar Cell 4 1.2.3 Thin Film Solar Cells (Second Generation) 5 1.2.4 New-Concept-Type Solar Cells (Third Generation) 7 Chapter 2 CIGS Solar Cell 8 2.1 The Definitions of the Parameters for Solar Cells 9 2.1.1 Solar Spectrum 9 2.1.2 Principle of Solar Cell Operation 10 2.2 The CIGS-Based Solar Cell 12 2.2.1 The Structure of CIGS Solar Cell 12 2.2.2 The Development of CIGS Solar Cell in NREL 17 2.3 Buffer Layer in CIGS-Based Solar Cell 18 2.3.1 Principle of Buffer Layer 18 2.3.2 Chemical Bath Deposition 19 2.4 Chemical Bath Deposition for CdS 21 2.4.1 Properties of CBD CdS 21 2.4.2 Preparation of CBD CdS 24 2.4.3 Deposition Mechanism of CBD CdS 25 2.4.4 The Function of CBD CdS 28 2.5 Interface and Junction in CIGS Solar Cell 30 2.5.1 Ordered Defect Chalcopyrite (ODC) 30 2.5.2 Surface Defect Layer 32 2.5.3 Identification of Junction 33 2.6 Scope of this Thesis 34 Chapter 3 Experimental Techniques 35 3.1 Experimental Flow Chart 35 3.2 Sample Preparation 36 3.2.1 Substrate Clean 36 3.2.2 CdS Film Growth on Glass 37 3.2.3 CdS Film Growth on Sputtering CIGS Substrate 38 3.3 Analysis Technique 38 3.3.1 Field Emission Scanning Electron Microscope (FE-SEM) 38 3.3.2 Grazing-Incident X-Ray Diffraction (GIXRD) 39 3.3.3 UV-Visible Spectroscopy 40 3.3.4 Two-Point Probe Electrical Measurement System 40 3.3.5 Solar Simulator 41 3.3.6 Energy-Dispersive X-ray Spectroscopy (EDX) 41 3.3.7 Auger Electron Nanoscope (Nano-Auger) 41 Chapter 4 Results and Discussion 42 4.1 The Effect of CBD Solution on CdS Film 42 4.1.1 Condition: 80℃_1.5mM_TU_NH3_30min 43 4.1.2 Condition: 80℃_3.0mM_TU_NH3_30min 47 4.1.3 Condition: 80℃_0.5mM_TU_NH3_30min 49 4.1.4 Summary: Condition: 80℃_CdSO4_TU_NH3_30min 51 4.1.5 Summary: Condition: 60℃_CdSO4_TU_NH3_1hr 52 4.2 The Effect of CBD Solution on CIGS Surface 55 4.2.1 Etching Effect of CBD Solution on CIGS 56 4.2.2 Cadmium Ion Diffusion 58 4.2.3 Summary: CIGS Surface Modification 60 4.3 CdS Buffer Layer Presented in My System 60 Chapter 5 Conclusions 62 Reference 63 Appendix - Tables 72 Appendix - Figures 77

    1. Moskowitz, V. M. F. a. P. D., Prog. Photovolt: Res. Appl 2000, 8, 27-38.
    2. KRI Report No. 8 Solar cells 2005.
    3. http://www.dotyenergy.com/Markets/PV_Solar.htm.
    4. Archer, M. D., The past and present. In: Clean electricity from photovoltaics. Imperial College Press: London, 2001; p 1-32.
    5. Nelson, J., "The physics of solar cells", Imperial Colleage Press 2003, P 214.
    6. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., Prog. Photovoltaics 2008, 16 (3), 235-239.
    7. Oregan, B.; Gratzel, M., Nature 1991, 353 (6346), 737-740.
    8. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Nature 1998, 395 (6702), 583-585.
    9. http://www.nrel.gov/ncpv/.
    10. Kasap, S. O., Optoelectronics and photonics: principles and practices, Prentice Hall published 2001, 255-273.
    11. Sze, S. M., Semiconductor Devices Physics and Technoloty, 2nd Edition,
    WILEY, 2001 2001.
    12. Rau, U., Appl. Phys. Lett. 1999, 74 (1), 111-113.
    13. Zhang, S. B.; Wei, S. H.; Zunger, A.; Katayama-Yoshida, H., Phys. Rev. B 1998, 57 (16), 9642-9656.
    14. R. A. Mickelsen, W. S. C., Y. R. Hsiao and V. E. Lowe, IEEE Trans. Electro. Dev. 1984, vol. ED-31, 542.
    15. Kronik, L.; Cahen, D.; Schock, H. W., Adv. Mater. 1998, 10 (1), 31-+.
    16. Ishizuka, S.; Yamada, A.; Islam, M. M.; Shibata, H.; Fons, P.; Sakurai, T.; Akimoto, K.; Niki, S., J. Appl. Phys. 2009, 106 (3), 6.
    17. Contreras, M. A.; Tuttle, J.; Gabor, A.; Tennant, A.; Ramanathan, K.; Asher, S.; Franz, A.; Keane, J.; Wang, L.; Noufi, R., Sol. Energy Mater. Sol. Cells 1996, 41-2, 231-246.
    18. Schlenker, T.; Laptev, V.; Schock, H. W.; Werner, J. H., Thin Solid Films 2005, 480, 29-32.
    19. Contreras, M. A.; Egaas, B.; King, D.; Swartzlander, A.; Dullweber, T., Thin Solid Films 2000, 361, 167-171.
    20. Contreras, M. A., PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS 1999, 7, 6.
    21. Park, J. S.; Dong, Z.; Kim, S.; Perepezko, J. H., J. Appl. Phys. 2000, 87 (8), 3683-3690.
    22. Canava, B.; Guillemoles, J. F.; Vigneron, J.; Lincot, D.; Etcheberry, A. In Chemical elaboration of well defined Cu(In,Ga)Se-2 surfaces after aqueous oxidation etching, Pergamon-Elsevier Science Ltd: 2003; pp 1791-1796.
    23. Darga, A.; Mencaraglia, D.; Djebbour, Z.; Dubois, A. M.; Guillemoles, J. F.; Connolly, J. P.; Roussel, O.; Lincot, D.; Canava, B.; Etcheberry, A. In Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se-2 solar cells, Feb 2; Elsevier Science Sa: pp 2550-2553.
    24. Wei, S. H.; Zhang, S. B.; Zunger, A., Appl. Phys. Lett. 1998, 72 (24), 3199-3201.
    25. DS, A., MATER RES SOC S P 1991, 228, 267.
    26. Wei, S. H.; Zunger, A., J. Appl. Phys. 1995, 78 (6), 3846-3856.
    27. D. J. Schroeder, J. L. H., G. D. Berry, and A. A. Rockett In hole concentration increases due to incorporation of Ga, Proceedings of the 11th International Conference on Ternary and Multi- nary Compounds, New York, New York.
    28. Shafarman, W. N.; Klenk, R.; McCandless, B. E., J. Appl. Phys. 1996, 79 (9), 7324-7328.
    29. M. A. Contreras, H. W., D. Niles, K. Ramanathan, R. Matson, J. Tuttle, J. Keane, and R. Nouf In efficiency decreases when Ga > 0.3, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, New York, New York, 1996; p 809.
    30. Contreras, M. A.; Noufi, R. In Chalcopyrite Cu(In,Ga)Se-2 and defect-chalcopyrite Cu(In,Ga)(3)Se-5 materials in photovoltaic P-N junctions, Apr; Elsevier Science Bv: pp 283-288.
    31. Persson, C.; Zunger, A., Phys. Rev. Lett. 2003, 91 (26), 4.
    32. Yan, Y.; Jiang, C. S.; Noufi, R.; Wei, S. H.; Moutinho, H. R.; Al-Jassim, M. M., Phys. Rev. Lett. 2007, 99 (23), 4.
    33. Anant, H., Proceedings of the 32th IEEE Photovoltaic Specialists Conference 2006, 557.
    34. Rau, U.; Schmidt, M., Thin Solid Films 2001, 387 (1-2), 141-146.
    35. Rothwarf, A. D. a. A., Proceedings of the 23th IEEE Photovoltaic Specialists Conference 1993, 475.
    36. Hegedus, S. S.; Shafarman, W. N., Prog. Photovoltaics 2004, 12 (2-3), 155-176.
    37. Akinmasa Yamada, H. T., Koji Matsubara, Shigeru Niki, Keiichiro Sakurai, Shogo Ishizuka, Kakuya Iwata Compound solar cell and process for producing the same. 2005.
    38. Hariskos, D.; Ruckh, M.; Ruhle, U.; Walter, T.; Schock, H. W.; Hedstrom, J.; Stolt, L., Sol. Energy Mater. Sol. Cells 1996, 41-2, 345-353.
    39. T. Negami, T. A., T. Satoh, S. Shimakawa, S. Hayashi, Y. Hashimoto Proceedings 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA, New Orleans, USA, 2002; p 656.
    40. A. Romeo, R. G., S. Buzzi, D. Abou-Ras, D.L. Batzner, D. Rudmann, H. Zogg, A.N. Tiwari Proceedings 14th IEEE Photovoltaic Specialist Conference, Bangkok, Thailand, Bangkok, Thailand, 2004; p 705.
    41. Ohtake, Y.; Kushiya, K.; Ichikawa, M.; Yamada, A.; Konagai, M., Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1995, 34 (11), 5949-5955.
    42. C. Platzer-Bjorkman, J. K., L. Stolt In Atomic layer deposition of Zn(O,S) buffer layers for high efficiency Cu(In,Ga)Se-2 solar cells, PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, Osaka, Japan, Osaka, Japan, 2003; p 461.
    43. Naghavi, N.; Spiering, S.; Powalla, M.; Cavana, B.; Lincot, D., Prog. Photovoltaics 2003, 11 (7), 437-443.
    44. Rusu, M.; Glatzel, T.; Neisser, A.; Kaufmann, C. A.; Sadewasser, S.; Lux-Steiner, M. C., Appl. Phys. Lett. 2006, 88 (14), 3.
    45. Glatzel, T.; Rusu, M.; Sadewasser, S.; Lux-Steiner, M. C., Nanotechnology 2008, 19 (14), 7.
    46. Hariskos, D.; Spiering, S.; Powalla, M., Thin Solid Films 2005, 480, 99-109.
    47. Lincot, D.; Ortegaborges, R.; Froment, M., Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 1993, 68 (2), 185-194.
    48. Wurz, R.; Rusu, M.; Schedel-Niedrig, T.; Lux-Steiner, M. C.; Bluhm, H.; Havecker, M.; Kleimenov, E.; Knop-Gericke, A.; Schlogl, R., Surf. Sci. 2005, 580 (1-3), 80-94.
    49. Rau, U.; Schmitt, M.; Engelhardt, F.; Seifert, O.; Parisi, J.; Riedl, W.; Rimmasch, J.; Karg, F., Solid State Commun. 1998, 107 (2), 59-63.
    50. Marron, D. F.; Sadewasser, S.; Meeder, A.; Glatzel, T.; Lux-Steiner, M. C., Phys. Rev. B 2005, 71 (3), 4.
    51. Call, R. L.; Jaber, N. K.; Seshan, K.; Whyte, J. R., Solar Energy Materials 1980, 2 (3), 373-380.
    52. Li, W. Y.; Cai, X.; Chen, Q. L.; Zhou, Z. B., Mater. Lett. 2005, 59 (1), 1-5.
    53. Nakada, T.; Kunioka, A., Appl. Phys. Lett. 1999, 74 (17), 2444-2446.
    54. Nagao, M.; Watanabe, S., Japanese Journal of Applied Physics 1968, 7 (6), 684-&.
    55. Furlong, M. J.; Froment, M.; Bernard, M. C.; Cortes, R.; Tiwari, A. N.; Krejci, M.; Zogg, H.; Lincot, D., J. Cryst. Growth 1998, 193 (1-2), 114-122.
    56. Yet-Ming Chiang, D. B. I., and W.David Kingery, Physical Ceramics. 1997.
    57. Guillen, C.; Martinez, M. A.; Herrero, J., Thin Solid Films 1998, 335 (1-2), 37-42.
    58. Chaure, N. B.; Bordas, S.; Samantilleke, A. P.; Chaure, S. N.; Haigh, J.; Dharmadasa, I. M., Thin Solid Films 2003, 437 (1-2), 10-17.
    59. Jayakrishnan, R.; Kumar, S. R.; Pandey, R. K., Semicond. Sci. Technol. 1994, 9 (1), 97-100.
    60. Pentia, E.; Pintilie, L.; Pintilie, I.; Botila, T., J. Optoelectron. Adv. Mater. 2000, 2, 593-601.
    61. Hiie, J.; Muska, K.; Valdna, V.; Mikli, V.; Taklaja, A.; Gavrilov, A., Thin Solid Films 2008, 516, 7008-7012.
    62. Akintunde, J. A., Phys. Status Solidi A-Appl. Res. 2000, 179 (2), 363-371.
    63. Sasikala, G.; Thilakan, P.; Subramanian, C., Sol. Energy Mater. Sol. Cells 2000, 62 (3), 275-293.
    64. Rami, M.; Benamar, E.; Fahoume, M.; Chraibi, F.; Ennaoui, A., Solid State Sci. 1999, 1 (4), 179-188.
    65. Oladeji, I. O.; Chow, L., J. Electrochem. Soc. 1997, 144 (7), 2342-2346.
    66. Weber, M.; Krauser, J.; Weidinger, A.; Bruns, J.; Fischer, C. H.; Bohne, W.; Rohrich, J.; Scheer, R., J. Electrochem. Soc. 1999, 146 (6), 2131-2138.
    67. Demelo, O.; Hernandez, L.; Zelayaangel, O.; Lozadamorales, R.; Becerril, M.; Vasco, E., Appl. Phys. Lett. 1994, 65 (10), 1278-1280.
    68. Zelayaangel, O.; Alvaradogil, J. J.; Lozadamorales, R.; Vargas, H.; Dasilva, A. F., Appl. Phys. Lett. 1994, 64 (3), 291-293.
    69. Cui, H. N.; Xi, S. Q., Thin Solid Films 1996, 288 (1-2), 325-329.
    70. Ortegaborges, R.; Lincot, D., J. Electrochem. Soc. 1993, 140 (12), 3464-3473.
    71. Dona, J. M.; Herrero, J., J. Electrochem. Soc. 1997, 144 (11), 4081-4091.
    72. Chang, C.-H., US 20070020400A1 2007.
    73. Guillen, C.; Martinez, M. A.; Maffiotte, C.; Herrero, J., J. Electrochem. Soc. 2001, 148 (11), G602-G606.
    74. Schmid, D.; Ruckh, M.; Grunwald, F.; Schock, H. W., J. Appl. Phys. 1993, 73 (6), 2902-2909.
    75. Jones, K. A., J. Cryst. Growth 1975, 47, 235.
    76. S.S. Li, B. S., C.H. Huang, C.H. Chang, Y.S. Chang, T.J. Anderson In CdS increases excess carrier litetime, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington, DC, Washington, DC, 1996; p 821.
    77. Kylner, A. The Role of CdS Buffer Layer in the Cu(In,Ga)Se2 Thin Film Solar Cell. Uppsala University, 1998.
    78. J. Kessler, M. R., D. Hariskos, U. Ruhle, R. Menner, H.W. Schock In etching by ammonia, Proceedings of the 23th IEEE Photovoltaic Specialists Conference, Louisville, KY, Louisville, KY, 1993; p 447.
    79. D. Lincot, R. O.-B., J. Vedel, M. Ruckh, J. Kessler, K. O. Velt- haus, D. Hariskos, and H. W. Schock In etching by ammonia, Proceedings of the 11th European Photovoltaic Solar Energy Conference, Montreux (Harwood Acdemic, Chur, Switzerland), Montreux (Harwood Acdemic, Chur, Switzerland), 1992; p 870.
    80. Kijima, S.; Nakada, T., Appl. Phys. Express 2008, 1 (7), 3.
    81. Mauk, P. H.; Tavakolian, H.; Sites, J. R., IEEE Trans. Electron Devices 1990, 37 (2), 422-427.
    82. Jiang, C. S.; Hasoon, F. S.; Moutinho, H. R.; Al-Thani, H. A.; Romero, M. J.; Al-Jassim, M. M., Appl. Phys. Lett. 2003, 82 (1), 127-129.
    83. Heske, C.; Eich, D.; Fink, R.; Umbach, E.; van Buuren, T.; Bostedt, C.; Terminello, L. J.; Kakar, S.; Grush, M. M.; Callcott, T. A.; Himpsel, F. J.; Ederer, D. L.; Perera, R. C. C.; Riedl, W.; Karg, F., Appl. Phys. Lett. 1999, 74 (10), 1451-1453.
    84. Xiao, H. Z.; Yang, L. C.; Rockett, A., J. Appl. Phys. 1994, 76 (3), 1503-1510.
    85. Schmid, D.; Ruckh, M.; Schock, H. W., Sol. Energy Mater. Sol. Cells 1996, 41-2, 281-294.
    86. Contreras, M. A.; Wiesner, H.; Tuttle, J.; Ramanathan, K.; Noufi, R., Sol. Energy Mater. Sol. Cells 1997, 49 (1-4), 239-247.
    87. Yan, Y.; Jones, K. M.; Abushama, J.; Young, M.; Asher, S.; Al-Jassim, M. M.; Noufi, R., Appl. Phys. Lett. 2002, 81 (6), 1008-1010.
    88. Romero, M. J.; Jones, K. M.; AbuShama, J.; Yan, Y.; Al-Jassim, M. M.; Noufi, R., Appl. Phys. Lett. 2003, 83 (23), 4731-4733.
    89. Sugiyama, T.; Chaisitsak, S.; Yamada, A.; Konagai, M.; Kudriavtsev, Y.; Godines, A.; Villegas, A.; Asomoza, R., Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 2000, 39 (8), 4816-4819.
    90. Contreras, M. A.; Ramanathan, K.; AbuShama, J.; Hasoon, F.; Young, D. L.; Egaas, B.; Noufi, R., Prog. Photovoltaics 2005, 13 (3), 209-216.
    91. Ramanathan, K.; Contreras, M. A.; Perkins, C. L.; Asher, S.; Hasoon, F. S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R.; Ward, J.; Duda, A., Prog. Photovoltaics 2003, 11 (4), 225-230.
    92. Tuttle, J. R.; Contreras, M. A.; Gillespie, T. J.; Ramanathan, K. R.; Tennant, A. L.; Keane, J.; Gabor, A. M.; Noufi, R., Prog. Photovoltaics 1995, 3 (4), 235-238.
    93. Contreras, M.; Tuttle, J.; Du, D. H.; Qi, Y.; Swartzlander, A.; Tennant, A.; Noufi, R., Appl. Phys. Lett. 1993, 63 (13), 1824-1826.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE