簡易檢索 / 詳目顯示

研究生: 劉哲維
Liu, Che-Wei
論文名稱: 三倍頻毫米波振盪器
Design of Millimeter-Wave Triple-Push Oscillators
指導教授: 劉怡君
Liu, Yi-Chun
口試委員: 謝秉璇
Hsieh, Ping-Hsuan
李俊興
Li, Chun-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 78
中文關鍵詞: 毫米波振盪器三倍頻振盪器壓控振盪器90奈米自混波振盪器
外文關鍵詞: millimeter-wave, oscillator, triple-push oscillator, VCO, 90 nm, self-mixing oscillator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,隨著半導體製程技術的日益成熟與不斷進步,無線通訊系統相關的研究也持續蓬勃發展,更高性能的電子產品需求亦與日俱增,高速資料傳輸、低成本和低耗能的電路變得越來越受歡迎。此外,由於現行使用頻段的日趨飽和,操作頻率也逐漸提高,以達到增加可操作頻寬的目的,因此射頻(Radio Frequency)收發端系統變得相當重要。而射頻收發端系統又包含以下幾個電路區塊,功率放大器(PA)、壓控振盪器(VCO)、低雜訊放大器(LNA)、混頻器(Mixer)和天線(Antenna),此論文聚焦在三倍頻毫米波振盪器的特性與設計,利用三種不同的架構設計產生三倍頻振盪器的效果。
    此論文討論了三種三倍頻毫米波振盪器的設計,使用90奈米互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor, CMOS)製程實現電路設計與晶片製作。第一個設計運用近似於60度的走線進行layout佈局,並採用電容分散的技巧來達到較好的對稱性與獲得更高的負跨導。此振盪器的振盪頻率為215.4 GHz,其具有- 16.28 dBm的輸出功率與-88.5 dBc/Hz at 1-MHz的相位雜訊。在第二個設計中,運用三組尺寸不同的電晶體組得到更高的三倍頻訊號輸出功率,其振盪頻率為201.2 GHz,輸出功率和相位雜訊分別為-13.8 dBm和-80.6 dBc/Hz at 1-MHz。最後一個設計使用自混波振盪器的架構來達成更好的對稱性,並利用PMOS加強第二諧波的訊號,使混波後的三倍頻訊號增強,這VCO的振盪頻率是92.2 GHz,有8.4%的頻率調變範圍,輸出功率和相位雜訊分別為-18.2 dBm和-82.8 dBc/Hz at 1-MHz。


    In recent years, as semi-conductor manufacturing technology becomes more and more mature, the researches of wireless communication systems increase significantly. The demands of high performance electronic products grow day by day. Therefore, circuits with high data rate, low costs and low power consumption become very popular. Furthermore, as the frequency bands being widely used saturates, desired frequency targets to higher bands and occupies a wider bandwidth to achieve high speed operation. As a result, radio frequency (RF) transceiver system becomes very important.
    Typical RF transceiver front-ends include power amplifier (PA), voltage-controlled oscillator (VCO), low-noise amplifier (LNA), mixer and antenna. This thesis focuses on the features and designs of millimeter-wave triple-push oscillators.
    In this thesis, three triple-push oscillators are proposed in 90-nm CMOS process. In work I, a triple push oscillator is realized with 60 degree wires and capacitance-splitting technique to reach better symmetry and higher negative transconductance. The oscillation frequency is 215.4 GHz, the output power is -16.28 dBm and the phase noise is -88.5 dBc/Hz at 1-MHz. The second work uses three unbalanced MOSFET pairs to achieve higher performance of the third harmonic. It has -13.8 dBm output power at 201.2 GHz, and the phase noise is -80.6 dBc/Hz at 1-MHz. Work III uses self-mixing technique to have better symmetry and PMOS push-push frequency doubler to enlarge second harmonic signal. It oscillates at 92.2 GHz with 8.4% frequency tuning range. The output power is -18.2 dBm, and the phase noise is -82.8 dBc/Hz at 1-MHz.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii Contents i List of Figures iv List of Table vii Chapter 1 Introduction 1 1.1. Introduction to Millimeter-Wave 1 1.2. W-band Standards and Applications 2 1.3. Thesis Organization 4 Chapter 2 Overview of Oscillators 5 2.1. Introduction 5 2.2. Analysis of Oscillators 6 2.2.1 Feedback System of Oscillators 6 2.2.2 LC-Tank Oscillators 7 2.3. Important Parameters for Oscillators 11 2.3.1 Oscillation Frequency and Frequency Tuning 11 2.3.2 Output Power 12 2.3.3 Phase Noise 14 2.3.4 Power Dissipation 20 Chapter 3 Passive and Active Components 22 3.1. 90-nm CMOS Process 22 3.2. Active Devices 23 3.3. Passive Devices 25 3.3.1 Inductors 25 3.3.2 MOS Varactors 28 Chapter 4 A 215.4 GHz Triple-Push Oscillator 31 4.1. Literature Survey 31 4.1.1 Basic Concept of Triple-Push Oscillator 31 4.1.2 Capacitance-Splitting Technique 34 4.2. Circuit Design 37 4.2.1 Design Flow 37 4.2.2 Design Parameters 39 4.3. Measurement Results 42 4.4. Discussion and Conclusion 45 Chapter 5 A 201.2 GHz Triple-Push Oscillator with Unbalanced Transistor Pairs 47 5.1. Literature Survey 47 5.1.1 Unbalanced Transistor Pairs 47 5.2. Circuit Design 51 5.2.1 Design Parameters 51 5.3. Post-Simulation and De-bugging of Work II 53 5.3.1 Post-Simulation Results 54 5.3.2 Re-EM Simulation of Layout 55 5.4. Discussion and Conclusion 57 Chapter 6 A Self-Mixing Voltage-Controlled Oscillator in W-Band 59 6.1. Literature Survey 59 6.1.1 Self-Mixing Technique 59 6.1.2 PMOS Push-Push Frequency Doubler 62 6.2. Circuit Design 63 6.2.1 Design Parameters 63 6.3. Measurement Results 66 6.4. Discussion and Conclusion 70 Chapter 7 Conclusion and Future Work 73 Reference 75

    [1] Huei Wang, Kwo-Wei Chang, D. C. W. Lo and Gee Sam Dow, "W-band MMIC-based component development and applications," Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium), San Francisco, CA, 1995, pp. 190-204.
    [2] ITU-R, "Attenuation by atmospheric gases," in ITU-R Rec, Geneva, 2005, pp. 676-6.
    [3] M. J. Marcus, "Spectrum management implications of millimeter wave technology," 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4), San Diego, CA, USA, 1994, pp. 631-634 vol.2.
    [4] B. Razavi, RF microelectronics, 2 ed., Prentice Hall, 2012.
    [5] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Fed 1966.
    [6] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb 1998.
    [7] Yu-Lung Tang and Huei Wang, "Triple-push oscillator approach: theory and experiments," IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1472-1479, Oct 2001.
    [8] L. Li, P. Reynaert and M. S. J. Steyaert, "A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate–Drain Impedance-Balancing Techniques," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 2, pp. 406-413, Feb 2011.
    [9] O. Momeni and E. Afshari, "High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach," IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 583-597, March 2011.
    [10] C. Cao, E. Seok, and K. O, "192 GHz push-push VCO in 0.13 m CMOS,”Electron. Lett., vol. 42, no. 4, pp. 208–210, Feb. 2006.
    [11] Momeni, O.; Afshari, E., "A 220-to-275 GHz travelingwave frequency doubler with -6.6dBm power at 244 GHz in 65nm CMOS,”Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, pp.286-288, 2011.
    [12] B. Khamaisi and E. Socher, "A 209–233 GHz Frequency Source in 90 nm CMOS Technology," IEEE Microwave and Wireless Components Letters, vol. 22, no. 5, pp. 260-262, May 2012.
    [13] C. L. S. Hsieh and J. Y. C. Liu, "A Low Phase Noise 210-GHz Triple-Push Ring Oscillator in 90-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 4, pp. 1983-1997, April 2018.
    [14] P. H. Chiang et al., "A 206 ∼ 220 GHz CMOS VCO using body-bias technique for frequency tuning," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-3.
    [15] D. Fritsche, S. Li, N. Joram, C. Carta and F. Ellinger, "Design and characterization of a 190-GHz voltage-controlled oscillator," 2016 46th European Microwave Conference (EuMC), London, 2016, pp. 493-496.
    [16] P. Stärke, V. Rieß, C. Carta and F. Ellinger, "A 173–200 GHz quadrature voltage-controlled oscillator in 130 nm SiGe BiCMOS," 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), Seoul, 2017, pp. 97-100.
    [17] P. Y. Chiang, O. Momeni and P. Heydari, "A 200-GHz Inductively Tuned VCO With -7-dBm Output Power in 130-nm SiGe BiCMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 10, pp. 3666-3673, Oct. 2013.
    [18] A. H. M. Shirazi, A. Nikpaik, R. Molavi, S. Mirabbasi and S. Shekhar, "A Class-C self-mixing-VCO architecture with high tuning-range and low phase-noise for mm-wave applications," 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, 2015, pp. 107-110.
    [19] Z. Y. Yang and R. Y. Chen, "High-Performance Low-Cost Dual 15 GHz/30 GHz CMOS LC Voltage-Controlled Oscillator," IEEE Microwave and Wireless Components Letters, vol. 26, no. 9, pp. 714-716, Sept. 2016.
    [20] K. W. Tan, T. S. Chu and S. S. H. Hsu, "A 76.2–89.1 GHz Phase-Locked Loop With 15.6% Tuning Range in 90 nm CMOS for W-Band Applications," IEEE Microwave and Wireless Components Letters, vol. 25, no. 8, pp. 538-540, Aug. 2015.
    [21] G. Huang and V. Fusco, "A 94 GHz Wide Tuning Range SiGe Bipolar VCO Using a Self-Mixing Technique," IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 86-88, Feb. 2011.
    [22] S. Kang and A. M. Niknejad, "A 100 GHz active-varactor VCO and a bi-directionally injection-locked loop in 65nm CMOS," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, 2013, pp. 231-234.
    [23] T. Xi, S. Guo, P. Gui, D. Huang, Y. Fan and M. Morgan, "Low-Phase-Noise 54-GHz Transformer-Coupled Quadrature VCO and 76-/90-GHz VCOs in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2091-2103, July 2016.

    QR CODE