簡易檢索 / 詳目顯示

研究生: 黃裕修
Huang, Yu-Hsiu
論文名稱: 以多層感知類神經網路輔助複合式節流器設計
Design Improvements on a Hybrid-type Restrictor by Using Multilayer Perceptron
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 林士傑
Lin, Shih-Chieh
蕭德瑛
Shaw, Dein
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 129
中文關鍵詞: 液靜壓軸承複合式節流器人工智慧多層感知器
外文關鍵詞: hydrostatic bearings, hybrid flow restrictor, perceptron
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 節流器為液靜壓軸承的重要關鍵模組,複合式節流器是由自補償式節流器與不同深度之溝槽式節流器搭配而成,本文藉由探討複合式節流器工作原理,建立其物理模型,並推導出相關統御方程式,接著進行數值模擬來探討複合式節流器在液靜壓軸承系統中,不同節流比時的剛性表現,同時利用單向墊液靜壓實驗平台進行理論及模擬驗證。然而,複合式節流器之數學模型為非線性,在建立其物理模型時又做了許多假設條件,再加上實驗過程中,來自於環境干擾的誤差因素,造成理論模擬無法與實驗結果非常吻合,使工程師未來在快速選擇出適合的結構參數以達軸承最佳剛性時會面臨相當大的難題。
    本論文使用的多層感知器(MLP)模型為人工智慧的一個分支,具有可以接受多輸入、多輸出參數、並能處理非線性問題等特性。本文以實驗所取得之數據做為訓練資料,建立一MLP網路模型,該模型會比理論模擬更接近實際狀況,在預測液靜壓軸承系統搭配不同節流器時,隨著供油壓力、負載、節流器結構參數等數值變化時其他相對應參數可能的改變,並依此結果輔助節流器設計時理論模擬的不足,達到最佳化設計的目標。


    Hydrostatic bearings are widely used in precision machine tools because of their superior features of high stiffness, high load-carrying capacity and long life. To obtain the high stiffness characteristic a hybrid-type flow restrictor, which is composed of a groove restrictor in series with a self-compensation one, is usually employed in hydrostatic bearings. However, engineers always face challenges in quickly obtaining a proper design of the hybrid-type restrictor because of too many design parameters involved.
    This paper mainly employs multilayer perceptron (MLP) to improve the stiffness of the hydrostatic bearing to a level of near infinite by optimizing the design parameters of the hybrid-type restrictor, such as the groove depth, preload and stiffness of springs. The equations governing the relationship among bearing stiffness, preload of hybrid-type restrictor, and various key parameters are first derived. The experimental rig is constructed comprising a hydrostatic slide with a single pad as well as an opposed pad together with several hybrid-type flow restrictors. Pressure, flow rate, load, and oil-film thickness are simultaneously measured.
    The numerical simulation of the hybrid-type flow restrictor based on the derived equations is performed and compared with experimental results. The MLP model, a branch of artificial intelligence (AI), consists of at least three layers, an input, an output, and a hidden layer. According to the collected data, the MLP model is trained effectively. By comparing the simulation with the MLP model predicted results, the MLP model can optimize the design parameters of flow restrictors to improve the stiffness of hydrostatic bearings.

    摘要 I Abstract II 致謝 IV 目錄 VII 圖目錄 X 符號表 XVII 第1章 導論 1 1-1 研究背景 1 1-2 液靜壓軸承與節流器文獻回顧 3 1-2-1 固定式節流器之研究 4 1-2-2 主動式節流器之研究 5 1-2-3 複合型節流器之研究 6 1-3 人工智慧發展回顧 8 1-4 人工智慧應用於軸承 12 1-5 研究動機與研究架構 12 第2章 液靜壓軸承與節流器基本理論推導 15 2-1 油墊封油面流阻計算 16 2-2-1 兩平行板間流場分析 16 2-2-2 圓形封油面流場分析 18 2-2-3 方形與圓形封油面流阻公式整理 21 2-2 溝槽式節流器 22 2-3 自補償式節流器 26 第3章 液靜壓軸承流阻網路法分析 28 3-1 單向墊流阻網路法分析 29 3-1-1 溝槽式節流器搭配單向墊系統 30 3-1-2 自補償式節流器搭配單向墊系統 32 3-1-3 複合式節流器搭配單向墊系統 37 第4章 自補償式節流器實驗研究 41 4-1 實驗架構與設備 41 4-1-1 液靜壓軸承供油與冷卻系統 42 4-1-2 液靜壓軸承實驗平台系統 43 4-1-3 實驗量測設備 45 4-1-4 實驗架設 47 4-2 實驗步驟 48 4-3 實驗結果與分析 50 4-3-1 流道擴孔試驗 52 4-3-2 實驗量測時間試驗 54 4-3-3 彈簧拉伸試驗 55 4-3-4 不同參數實驗結果與模擬驗證 69 第5章 複合式節流器實驗研究 75 5-1 實驗步驟 75 5-2 實驗結果與分析 77 第6章 多層感知器模型 86 6-1 多層感知器網路 87 6-1-1 多層感知器網路簡介 89 6-1-2 監督式學習 94 6-1-3 多層感知器網路訓練原理 95 6-2 多層感知器模型建立 100 6-2-1 資料前處理 100 6-2-2 多層感知器網路結構 102 6-2-3 網路驗證 104 6-3 多層感知器模型預測結果探討 106 第7章 結論與未來工作 118 7-1 結論 118 7-2 未來工作 119 第8章 參考文獻 123

    [1] Girard, L. D., 1862, Application des Surfaces Glissantes, Bachelier, Paris.
    [2] Hirn, G. A., 1854, "Sur les principaux phenomenes que present les frottements mediats et sur les diverses manieres de determiner la valeur mecanique des matieres employees au graissage des machines," Bull. Soc. ind. de Mulhouse, 1954, Vol. XXVI, pp. 188-277.
    [3] Malanoski Telingater, V. S., 1972, “Hydrostatic Slideways Using Standard Bearings, ” Machines and Tooling. Vol.43, No.2, pp.15-20
    [4] Ling, T. S., 1962, “On the Optimization of the Stiffness of Externally Pressurized Bearings,” Trans. ASME. J. Basic Eng. Vol. 84, pp.119-122.
    [5] O’Donoghue, J. P., 1972, “Parallel Orifice and Capillary Control for Hydrostatic Journal bearings,” Tribology International Vol. 5, pp.81-82.
    [6] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., and Singh, S. K., 1995, “Comparative study of the performance of six-pocket and four-pocket hydrostatic/hybrid flexible journal bearings,” Tribology Transactions Vol.28, pp.531-539.
    [7] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., and Singh, S. K., 1998, “Performance of Hydrostatic/Hybrid Journal Bearings with Unconventional Recess Geometries,” Tribology Transactions Vol.41, pp.375-381.
    [8] Mohsin, M. E., 1963, “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing,” Third International Conference on Machine Tool Design Research pp.129-424.
    [9] Rowe, W. B. and O’Donoghue, J.P., 1970, “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing,” Proc. I. E. Tribology. Vol.184, pp.1-9.
    [10] Moris, S. A., 1972, “Passively and Actively Controlled Externally Pressurized Oil-film Bearing, ” Trans. ASME. Ser. F, Vol. 94,pp. 56-63.
    [11] Rowe W. B., 1976, Hydrostatic Bearing Patent Application no.51919/67. Publish 15th November170 (1):602. Assigned to Wickman Ltd
    [12] Rowe W. B., 1969, Hydrostatic bearing patent application no.22072/66. Publish 15th November 170 (1):602. Assigned to Wickman Ltd
    [13] Tully, N., 1977, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing,” Trans. of ASME. Vol. 99, No.1, pp.106-112.
    [14] Osumi T., Mori H., Ikeuchi K., 1985, “Effects of Stabilizer on Initial Response of Self Controlled Externally Pressurized Bearings,” Trans. JSLE, Vol. 20, pp.651-657.
    [15] Yoshimoto, S., Anno, Y., Amari K., 1990, “Static Characteristics of Hydrostatic Journal Bearing with a Self Controlled Restrictor Employing Floating Disk,” Trans. JSLE. Vol. 56, pp.3360-3367.
    [16] Yoshimoto S., Kikuchi K., 1999, “Step Response Characteristics of Hydrostatic Journal Bearings with Self-controlled Restrictor Employing Floating Disk,” Trans. Int. Vol.121, No.4, pp. 315-320.
    [17] Schoenfold, R., 2001, “Regulator for Adjusting the Fluid Flow in a Hydrostatic or Aerostatic Device.” US Patent number 6276491B1.
    [18] Singh, N., Sharma, S. C., Jain, S. C., and Reddy, S. S., 2004, “Performance of Membrane Compensated Multirecess Hydrostatic Hybrid Flexible Journal Bearing System Considering Various Recess Shapes, ” Tribology International Vol. 37, pp.11-24.
    [19] Kang, Y., Shen, P. C., Chen, C. H., Chang Y. P. and Lee, H. H., 2007, “Modified determination of fluid resistance for membrane-type restrictors,” Industrial Lubrication and Tribology, pp.123-131.
    [20] Kang, Y., Shen, P. C., Chang, Y. P., Lee, H. H., Chiang, C. P., 2007, “ Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression,” Tribology International, Volume 40, Issue 9, pp.1369-1380.
    [21] Mayer, J. E. and Shaw, M. C., 1963, “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors,” ASEM Journal of Basic Engineering, Vol. 85, pp.291
    [22] Schoenfold, R., Flow-rate regulator for liquid and/or gaseous materials. D.E. Patent No. 3150117 A1 (1983).
    [23] 王翊丞,2015,“液靜壓軸承複合型節流裝置設計與實驗”國立清華大學動力機械系碩士論文
    [24] 宋震國、王翊丞,2015,“主動式補償液靜壓軸承及其節流器”,中華民國發明專利第I597435號。
    [25] Turing, A. M., 1950, Computing Machinery and Intelligence. Mind 49: 433-460.
    [26] McCulloch, W.S. & Pitts, W., 1943, W. Bulletin of Mathematical Biophysics 5: 115
    [27] Tropp, H. S., Chichester John, V. N., 2003, Encyclopedia of Computer Science, 4th edition, John Wiley and Sons Ltd.
    [28] Hebb, D.O., 1949, The Organization of Behavior. New York: Wiley & Sons
    [29] Rosenblatt, F., 1957, The Perceptron--a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory
    [30] Minsky, M., Papert, S., 1969, Perceptrons: An Introduction to Computational Geometry. Cambridge, MA, USA: MIT Press.
    [31] Hopfield, J. J., April 1982, "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences of the USA, vol. 79 no. 8 pp. 2554–2558
    [32] Rumelhart, D. E., Hinton, G.E., Williams, R.J., 1986, “Learning representations by back-propagating errors”, Nature, Vol. 323, pp. 533-536
    [33] Hinton, G. E. and Salakhutdinov, R. R., 2006, “Reducing the Dimensionality of Data with Neural Networks”, Science, Vol.313, pp. 504-507
    [34] Canbulut, F., Sinanoglu, C., Yildirim, S., 2004, “Analysis of Effects of Sizes of Orifice and Pockets on the Rigidity of Hydrostatic Bearing Using Neural Network Predictor System”, KSME International Journal, Vol. 18 No. 3, pp. 432 ~ 442
    [35] Canbulut, F., Sinanoglu, C., 2004, “ An investigation on the performance of hydrostatic pumps using artificial neural network”, JSME International Journal, Vol. 47 No. 3, pp 864-872
    [36] Canbulut, F., 2004, “The experimental analyses of effects of the geometric and working parameters on the circular hydrostatic thrust bearing”, JSME International Journal, Vol. 48 No. 4, pp 715-722
    [37] Canbulut, F., Yildirim, S., and Sinanoglu, C., 2004, “Design of an artificial neural network for analysis of frictional power loss of hydrostatic slipper bearings”, Tribology Letters, Vol. 17, No. 4, pp 887-898
    [38] Rafieea, J., Arvania, F., Harifib, A., Sadeghic, M.H., 2007, “Intelligent condition monitoring of a gearbox using artificial neural network”, Mechanical Systems and Signal Processing 21, pp 1746–1754.
    [39] Saxena, A., Saad, A., 2007, “Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems”, Applied Soft Computing 7, pp 441–454.
    [40] Wang, Y., Liu, Z., Zhao, Y., Chen, Q., Cai, L., 2019, “Research on an ANN system for monitoring hydrostatic turntable performance based on ODNE training”, Tribology International Volume 133, pp.21-31.
    [41] Slocum, Alexander H., 1992, Precision Machine Design, Prentice Hall Inc. Dear born, Michigan
    [42] Bruus, 2008, H. "Theoretical microfluidics. Oxford master series in condensed matter physics."
    [43] 鍾洪,張冠坤,2007,液體靜壓動靜壓軸承設計使用手冊,電子工業出版社:p.30
    [44] 李威志,2012,“新型主動式補償液靜壓軸承之靜動態特性分析”國立清華大學動力機械系碩士論文
    [45] 鮑思丞,2016,“智慧型線性液靜壓滑塊模組設計”國立清華大學動力機械系碩士論文
    [46] 程瑾文,2017,“泛用型虛實整合系統架構建立─以液靜壓節流器之調整為驗證載具”國立清華大學動力機械系碩士論文
    [47] 張軼峯,2018,“液靜壓複合式節流器設計─輔以類神經網路之決策” 國立清華大學動力機械系碩士論文
    [48] 高惟禎,2019,“以多層感知器網路輔助液靜壓軸承節流器設計” 國立清華大學動力機械系碩士論文
    [49] Neuron, Wikipedia, 網路資源, from https://en.wikipedia.org/wiki/Neuron
    [50] 李宏毅,機器學習課程講議,from http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html
    [51] Standford CS class, CS231n: Convolutional Neural Networks for Visual Recognition., from http://cs231n.github.io/neural-networks-3/
    [52] 丁川康,2019,人工智慧導論Lec.18 Learning from Observations課程講義。
    [53] Robert W. E., Montgomery, T. X., 2010, BELLEVILLE SPRING GUIDE SYSTEM, U.S. Patent No.US 7,854.425 B2.
    [54] Nicholas, P. M., Jason, T. D., Rajendra, S., 2017, “Analytical and experimental characterization of nonlinear coned disk springs with focus on edge friction contribution to force-deflection hysteresis”, Mechanical Systems and Signal Processing, Volume 91, pp 215-232.
    [55] HOYTOM S.L., Disc springs test, 2014, from https://www.youtube.com/watch?v=xI2t42XmEns
    [56] Captain Science Corporation, 機械滑動面耐磨滑片Turcite B, from https://www.capind.com.tw/msg/about.html
    [57] SPRINGMING, 波型彈簧設計文件, from http://www.springming.com/front/bin/ptlist.phtml?Category=463501
    [58] OLYMPUS, 雷射共軛焦顯微鏡OLS4100, from
    https://www.olympus.com.tw/

    QR CODE