簡易檢索 / 詳目顯示

研究生: 吳宗翰
論文名稱: 富鎳鈦鎳記憶合金中R相雙向形狀記憶效應之研究
指導教授: 胡塵滌
口試委員: 吳錫侃
楊聰仁
胡塵滌
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 富鎳鈦鎳記憶合金R相雙向形狀記憶效應拘束時效全方位形狀記憶效應
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對富鎳(50.74%Ni)的鈦鎳記憶合金,本論文討論合金中R相的雙向形狀記憶效應。研究主要分為三部分,第一部分探討試片經673K不同時間時效處理後之基本性質改變,經不同時效處理,母相產生不同狀態Ti3Ni4,析出物,週圍造成不同應力場,基地中的鎳含量亦改變,使試片相變態溫度變化,並造成相變態過程中出現R相,成為B2RB19‘之二階段相變態。
    第二部分將673K/72ks時效處理後之試片於R相溫度做拘束處理,可觀察到R (273K)與B19‘ (77K)之間具有雙向形狀記憶效應。將試片在R相溫度做循序漸進的數次縮小尺寸拘束處理,隨著拘束環尺寸的縮小,試片在R、B19‘兩相之形狀會越來越彎曲,雙向形狀記憶效應會越來越強。XRD分析發現,673K/72ks時效處理後試片有明顯的R(011)與R(1 ̅01)兩根R相繞射峰,經過R相溫度拘束處理,傾向為R(1 ̅01)織構變強,推測織構之改變可能是使其在R(273K) B19’(77K)變化具有雙向形狀記憶效應之原因。若將試片浸於373K沸水,使試片到B2母相再降溫到298K,則會打亂R相的排列,雙向形狀記憶效應消失。
    第三部分先將試片進行673K拘束時效,試片內部產生排列的Ti3Ni4析出物,試片本身會具有全方位形狀記憶效應,再將試片於R相溫度做拘束處理,探討析出物排列與R相溫度拘束處理兩者加成後對形狀記憶之效應。並討論在R相溫度使用反向拘束處理(試片彎曲方向與673K拘束時效時相反)的記憶效應。


    目錄 摘要 3 第一章 緒論 7 前言 7 研究目的 8 第2章 文獻回顧 9 2-1 形狀記憶特性 9 2-1-1 形狀記憶效應 10 2-1-2 擬(超)彈性 15 2-2 鈦鎳形狀記憶合金之文獻回顧 18 2-3 R-phase 之文獻回顧 19 2-4 鈦鎳合金析出物之文獻回顧 21 第3章 實驗方法與儀器 24 3-1 實驗流程 24 3-1 試片製備 25 3-2 成分分析 25 3-3 顯微結構觀察 25 3-3-1 光學顯微觀察 (OM) 25 3-3-2 掃描式電子顯微鏡觀察 (SEM) 25 3-4 X-Ray 繞射分析 26 3-5 雙向形狀記憶效應 (TWSME) 測試 26 3-6 熱示差掃描卡量計測量 (DSC) 28   第4章 結果與討論 30 4-1 第一部分673K不同時間時效後基本性質 30 4-1-1 試片代號 30 4-1-2 DSC量測 30 4-1-3 XRD量測 37 4-1-4 金相 40 4-2 第二部分673K時效後,R相拘束處理 42 4-2-1 試片代號 42 4-2-2 形狀記憶效應 42 4-2-3 判斷是否R相穩定化造成雙向形狀記憶效應 45 4-2-4 XRD量測 47 4-3 第三部分673K拘束時效中試片厚度對記憶效應之影響 52 4-4 第三部分673K拘束時效後,R相溫度拘束處理 55 4-4-1 試片代號 55 4-4-2 R相溫度反向拘束處理 55 4-4-3 R相溫度第一次正向拘束處理與後續作反向拘束處理 58 4-4-4 XRD量測 60 4-4-5 金相 64 第五章 結論 66 第六章 參考文獻 67 附錄1…………………………...…………...………...........………………………73 附錄2………………………………...………………………………….…….……76 附錄3………………………………………………………………….……………78 附錄4………………………………………………………………….……………80 附錄5………………………………………………………………….……………86 附錄6…………………………………………………………………….…………89   表目錄 表 3 1 不同試片厚度,相同表面應變量 27 表 3 2 相同試片厚度,不同表面應變量 27 表 4 1 成份分析之結果 30 表 4 2 673K時效試片之各相變態溫度(K) 32 表 4 3 673K時效試片之各相變化熱焓值(J/g) 32 表 4 4 673K時效,相同表面應變量、不同試片厚度,試片外觀隨溫度變化圖 53   圖目錄 圖 2 1 CuAlNi合金熱彈性麻田散相,隨溫度升高或降低之顯微結構照片[15] 10 圖 2 2 形狀記憶效應示意圖 12 圖 2 3 單向形狀記憶效應與雙相形狀記憶效應示意圖 13 圖 2 4 全方位形狀記憶效應示意圖 13 圖 2 5 應變-溫度曲線,外加應力102MPa 14 圖 2 6 外加應力與變態溫度關係 14 圖 2 7 擬彈性效應拉伸曲線示意圖 16 圖 2 8 TiNi形狀記憶合金之應力-應變-溫度關係圖[24] 17 圖 2 9 形狀記憶效應與超彈性存在區域示意圖 17 圖 2 10 TiNi二元平衡相圖[38] 19 圖 2 11 (a)B2母相單位晶格延 <111> 方向膨脹變形為(b) R相單位晶格 21 圖 2 12 Ti3Ni4在母相析出造成的晶格扭曲 23 圖 3 1 Shimadzu XRD-6000繞射儀 26 圖 3 2 不同半徑之拘束環 28 圖 3 3 試片曲率半徑計算方式示意圖 28 圖 3 4 DSC200F3熱示差掃描卡量計 29 圖 3 5 典型的麻田散相變化之DSC曲線圖形 29 圖 4 1 1073/1.8ks剛完成退火步驟試片之DSC圖 32 圖 4 2試片673K時效之DSC圖 35 圖 4 3相變態溫度Rs、Rf時效趨勢圖 36 圖 4 4相變態熱焓值ΔHΔB2->R、ΔHR->B2時效趨勢圖 36 圖 4 5 1073/1.8ks剛完成退火步驟試片之XRD分析圖 37 圖 4 6 673K時效不同時間,XRD分析圖 39 圖 4 7半高寬與時效時間趨勢圖 39 圖 4 8 P673K/3.6ks (a)OM (b)SEM 41 圖 4 9 P673K/72ks (a)OM (b)SEM 41 圖 4 10 P673K/144ks (a)OM (b)SEM 41 圖 4 11 P673K/216ks (a)OM (b)SEM 41 圖 4 12 673/72ks-C298/86.4ks試片, 形狀記憶量測經過373K、273K與77K三個溫度 43 圖 4 13 673K時效72ks後,298K R相溫度作各種拘束 273K、77K形狀變化趨勢圖 44 圖 4 14 673K時效72ks後,298K R相溫度作各種拘束273K、77K形狀變化圖 44 圖 4 15 內徑5.75mm之拘束環 46 圖 4 16 673K時效72ks,R相拘束不同時間,時效趨勢圖 46 圖 4 17 673K時效72ks XRD分析圖 48 圖 4 18 673K時效72ks,298K R相溫度作各種拘束,XRD分析圖 50 圖 4 19 673K時效72ks,298K R相溫度作各種拘束, XRD分析比較圖 51 圖 4 20形狀變化率差值,兩不同厚度試片之時效趨勢圖 54 圖 4 21 673K拘束時效72ks後,298K R相溫度作各種反向拘束 57 圖 4 22 673K拘束時效72ks後,298K R相溫度作各種反向拘束 57 圖 4 23 673K拘束時效72ks後,298K R相溫度先正向拘束與後續各反向拘束,273K、77K形狀變化趨勢圖 59 圖 4 24 673K拘束時效72ks後,298K R相溫度先正向拘束與後續各反向拘束,273K、77K形狀變化圖 59 圖 4 25 673K拘束時效72ks,XRD分析圖 61 圖 4 26 673K拘束時效72ks,R相溫度各種不同反向拘束,XRD分析圖 62 圖 4 27 673K拘束時效72ks,R相溫度各種不同正向拘束,XRD分析圖 63 圖 4 28 673K拘束時效72ks,R相溫度各種不同拘束,XRD分析比較圖 63 圖 4 29 PC673K/3.6ks (side view) (a)OM (b)SEM 65 圖 4 30 PC673K/72ks (side view) (a)OM (b)SEM 65 圖 4 31 PC673K/144ks (side view) (a)OM (b)SEM 65 圖 4 32 PC673K/216ks (side view) (a)OM (b)SEM 65 圖 4 33 B19’相關文獻之XRD 分析圖 91

    1. Chang, L.C. and T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase. Transactions of the American Institute of Mining and Metallurgical Engineers, 1951. 191(1): p. 47-52.
    2. Basinski, Z.S. and J.W. Christian, Crystallography of Deformation by Twin Boundary Movements in Indium-Thallium Alloys. Acta Metallurgica, 1954. 2(1): p. 101-116.
    3. Schetky, L.M., Shape-Memory Alloys. Scientific American, 1979. 241(5): p. 74-82.
    4. Wayman, C.M., Some Applications of Shape-Memory Alloys. Journal of Metals, 1980. 32(6): p. 129-137.
    5. Miyazaki, S. and K. Otsuka, Development of Shape Memory Alloys. Isij International, 1989. 29(5): p. 353-377.
    6. Delaey, L., et al., Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations .1. Structural and Microstructural Changes Associated with Transformations. Journal of Materials Science, 1974. 9(9): p. 1521-1535.
    7. Jardine, A.P., K.H.G. Ashbee, and M.J. Bassett, Effects of Cooling Rate on the Shape Memory Effect Thermodynamics of Niti. Journal of Materials Science, 1988. 23(12): p. 4273-4281.
    8. Lin, H.C. and S.K. Wu, Determination of Heat of Transformation in a Cold-Rolled Martensitic Tini Alloy. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1993. 24(2): p. 293-299.
    9. Miyazaki, S. and A. Ishida, Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 106-133.
    10. Ishida, A. and S. Miyazaki, Microstructure and mechanical properties of sputter-deposited Ti-Ni alloy thin films. Journal of engineering materials and technology, 1999. 121(1): p. 2-8.
    11. Miyazaki, S., et al., Characteristics of Deformation and Transformation Pseudoelasticity in Ti-Ni Alloys. Journal De Physique, 1982. 43(Nc-4): p. 255-260.
    12. Krulevitch, P., et al., Thin film shape memory alloy microactuators. Journal of Microelectromechanical Systems, 1996. 5(4): p. 270-282.
    13. Krishnan, R.V., et al., Thermoplasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations .2. Macroscopic Mechanical-Behavior. Journal of Materials Science, 1974. 9(9): p. 1536-1544.
    14. Warlimon.H, et al., Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations .3. Thermodynamics and Kinetics. Journal of Materials Science, 1974. 9(9): p. 1545-1555.
    15. 賴耿陽, 形狀記憶合金. 復漢出版社, 1999. 1: p. 1-44.
    16. Nishida, M. and T. Honma, Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni. Scripta Metallurgica, 1984. 18(11): p. 1299-1302.
    17. Nishida, M. and T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging. Scripta Metallurgica, 1984. 18(11): p. 1293-1298.
    18. Honma, T., Proc. Int. Conf. on Martensitic Transformations (ICOMAT-86), 1987: p. 709.
    19. Todoroki, T. and H. Tamura, Deformation-Behavior of a Thermally Cycled Ti-Ni Alloy Coil under an Applied Stress. Journal of the Japan Institute of Metals, 1986. 50(6): p. 538-545.
    20. Todoroki, T. and H. Tamura, The Stress-Induced Transformation of a Ti-Ni Alloy by the Pre-Load Test Method. Journal of the Japan Institute of Metals, 1986. 50(6): p. 546-554.
    21. Otsuka, K., in: Proc. Int’l. Conf. on Solid to Solid Phase Transformations, TMS-AIME Pittsburgh, PA. (USA), 1981: p. 1276.
    22. Otsuka, K. and K. Shimizu, Pseudoelasticity. Metals Forum, 1981. 4(3): p. 142-152.
    23. Otsuka, K. and a.C.M. Wayman, in: Reviews on the Deformation Behavior of Materials, (P. Feltham ed.), Israel, 1977,: p. 81.
    24. Wayman, C.M., Proc. ICOMAT-89,Sydney, Australia, 1989: p. 519.
    25. C.M. Jackson, H.J. Wanger, and R.J. Wasilewski, 55-NITIONL Report”. NASA-SP5110, 1972.
    26. K. Ostuka, S. Sawamura, and a.K. Shimizu, Phys. Stat. Sol., 5, 1971: p. 457.
    27. Lahoz, R., L. Gracia-Villa, and J.A. Puertolas, Training of the two-way shape memory effect by bending in NiTi alloys. Journal of Engineering Materials and Technology-Transactions of the Asme, 2002. 124(4): p. 397-401.
    28. Liu, Y., et al., Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta materialia, 1999. 47(2): p. 645-660.
    29. Liu, Y.O. and P.G. Mccormick, Factors Influencing the Development of 2-Way Shape Memory in Niti. Acta Metallurgica Et Materialia, 1990. 38(7): p. 1321-1326.
    30. Wang, Z.G., et al., Design of TiNi alloy two-way shape memory coil extension spring. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003. 345(1-2): p. 249-254.
    31. Prader, P. and A.C. Kneissl, Deformation behaviour and two-way shape memory effect of NiTi alloys. Zeitschrift Fur Metallkunde, 1997. 88(5): p. 410-415.
    32. Scherngell, H. and A.C. Kneissl, Generation, development and degradation of the intrinsic two-way shape memory effect in different alloy systems. Acta Materialia, 2002. 50(2): p. 327-341.
    33. Scherngell, H. and A.C. Kneissl, Influence of the microstructure on the stability of the intrinsic two-way shape memory effect. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 400-403.
    34. Hebda, D.A. and S.R. White, Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior. Smart Materials & Structures, 1995. 4(4): p. 298-304.
    35. Perkins, J. and R.O. Sponholz, Stress-Induced Martensitic-Transformation Cycling and 2-Way Shape Memory Training in Cu-Zn-Al Alloys. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1984. 15(2): p. 313-321.
    36. Schroeder, T.A. and C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals. Scripta Metallurgica, 1977. 11(3): p. 225-230.
    37. M.M. Reyhani, P.G.M., Proc. ICO-MAT-86, Japan Inst. Metals 1986: p. 896.
    38. Otsuka, K. and X.B. Ren, Recent developments in the research of shape memory alloys. Intermetallics, 1999. 7(5): p. 511-528.
    39. Ling, H.C. and R. Kaplow, Phase-Transitions and Shape Memory in Niti. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1980. 11(1): p. 77-83.
    40. M. Matsumoto and T. Honma, Proc. First JIM Inst. Symp. on New Aspects of Martensitic Transformation, Japan Institute of Metals, Sendai 1976: p. 199.
    41. V.N. Khachin, et al., Phys. Met. Metallogr. (Engl. Trans.), 46 (3), 1978: p. 49.
    42. Bradley, D., Sound Propagation in near-Stoichiometric Ti-Ni Alloys. Journal of the Acoustical Society of America, 1965. 37(4): p. 700-&.
    43. Dautovic.Dp and G.R. Purdy, Phase Transformations in Tini. Canadian Metallurgical Quarterly, 1965. 4(2): p. 129-&.
    44. Wayman, C.M., K. Shimizu, and I. Cornelis, Transformation Behavior and Shape Memory in Thermally Cycled Tini. Scripta Metallurgica, 1972. 6(2): p. 115-&.
    45. Sandrock, G.D., A.J. Perkins, and R.F. Hehemann, Premartensitic Instability in near-Equiatomic Tini. Metallurgical Transactions, 1971. 2(10): p. 2769-&.
    46. Wang, F.E., et al., Irreversible Critical Range in Tini Transition. Journal of Applied Physics, 1968. 39(5): p. 2166-&.
    47. Melton, K.N. and O. Mercier, Fatigue of Niti Thermoelastic Martensites. Acta Metallurgica, 1979. 27(1): p. 137-144.
    48. Wang, F.E., W.J. Buehler, and S.J. Pickart, Crystal Structure and a Unique Martensitic Transition of Tini. Journal of Applied Physics, 1965. 36(10): p. 3232-&.
    49. Ling, H.C. and R. Kaplow, Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic Niti. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1981. 12(12): p. 2101-2111.
    50. Dautovic.Dp, et al., Calorimetric Study of a Diffusionless Phase Transition in Tini. Journal of Applied Physics, 1966. 37(6): p. 2513-&.
    51. Hwang, C., et al., Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase. Philosophical Magazine A, 1983. 47(1): p. 9-30.
    52. Salamon, M.B., M.E. Meichle, and C.M. Wayman, Premartensitic Phases of Ti50ni47fe3. Physical Review B, 1985. 31(11): p. 7306-7315.
    53. Sato, M., A. Ishida, and S. Miyazaki, Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at% Ni. Thin Solid Films, 1998. 315(1-2): p. 305-309.
    54. Redeker, T., et al., Organometallic chemical vapor deposition (OMCVD) of thin films of titanium/nickel alloys (TiNi). Abstracts of Papers of the American Chemical Society, 1998. 216: p. U188-U188.
    55. Hanlon, J.E., S.R. Butler, and Wasilews.Rj, Effect of Martensitic Transformation on Electrical and Magnetic Properties of Niti. Transactions of the Metallurgical Society of Aime, 1967. 239(9): p. 1323-&.
    56. Saburi, T., T. Tatsumi, and S. Nenno, Effects of Heat-Treatment on Mechanical-Behavior of Ti-Ni Alloys. Journal De Physique, 1982. 43(Nc-4): p. 261-266.
    57. Airoldi, G., G. Bellini, and C. Difrancesco, Transformation Cycling in Niti Alloys. Journal of Physics F-Metal Physics, 1984. 14(8): p. 1983-1987.
    58. Tadaki, T., Y. Nakata, and K. Shimizu, Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy. Transactions of the Japan Institute of Metals, 1987. 28(11): p. 883-890.
    59. Miyazaki, S., Y. Igo, and K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys. Acta Metallurgica, 1986. 34(10): p. 2045-2051.
    60. Chang, C.Y., D. Vokoun, and C.T. Hu, Two-way shape memory effect of NiTi alloy induced by constraint aging treatment at room temperature. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2001. 32(7): p. 1629-1634.
    61. Gyobu, A., et al., Two-way shape memory effect of sputter-deposited Ti-rich Ti-Ni alloy films. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 312(1-2): p. 227-231.
    62. Wada, K. and Y. Liu, Shape recovery of NiTi shape memory alloy under various pre-strain and constraint conditions. Smart Materials & Structures, 2005. 14(5): p. S273-S286.
    63. Chang, S. and S.K. Wu, Damping characteristics of cold-rolled and annealed equiatomic TiNi shape memory alloy. Key Engineering Materials, 2006. 319: p. 9-16.
    64. Lygin, K., et al., A Methodology for the Development, Production, and Validation of R-Phase Actuators. Journal of Materials Engineering and Performance, 2012. 21(12): p. 2657-2662.
    65. Zhou, Y., et al., Understanding of multi-stage R-phase transformation in aged Ni-rich Ti–Ni shape memory alloys. Materials Science and Engineering: A, 2006. 438: p. 602-607.
    66. Šittner, P., et al., R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mechanics of Materials, 2006. 38(5): p. 475-492.
    67. Ohkata, I. and Y. Suzuki, The design of shape memory alloy actuators and their applications. Otsuka K., Wayman C. Eds, 1999: p. 240-266.
    68. Saburi, T., Ti-Ni shape memory alloys. Shape memory materials, 1999: p. 49-96.
    69. Nishida, M., C.M. Wayman, and T. Honma, Electron-Microscopy Studies of the All-Round Shape Memory Effect in a Ti-51.0 Atmospheric-Percent Ni-Alloy. Scripta Metallurgica, 1984. 18(12): p. 1389-1394.
    70. Kainuma, R., M. Matsumoto, and T. Honma. The mechanism of the all-round shape memory effect in a Ni-rich TiNi alloy. in Proceedings of the International Conference on Martensitic Transformations. ICOMAT-86. 1986.
    71. Filip, P., J. Rusek, and K. Mazanec, Effects of Work-Hardening and Heat-Treatment on the Phase-Transformation Behavior of Ti-50.6 at Percent Ni-Alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1991. 141(2): p. L5-L8.
    72. Li, D.Y., X.F. Wu, and T. Ko, The Effect of Stress on Soft Modes for the Phase-Transformation in a Ti-Ni Alloy .1. The Stress-Induced Transformation and Soft Modes. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1991. 63(3): p. 585-601.
    73. Li, D.Y., X.F. Wu, and T. Ko, The Texture of Ti-51.5 at Percent-Ni Rolling Plate and Its Effect on the All-Round Shape Memory Effect. Acta Metallurgica Et Materialia, 1990. 38(1): p. 19-24.
    74. Saburi, T., S. Nenno, and T. Fukuda, Crystal-Structure and Morphology of the Metastable X-Phase in Shape Memory Ti-Ni Alloys. Journal of the Less-Common Metals, 1986. 125: p. 157-166.
    75. Khalil-Allafi, J., A. Dlouhy, and G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Materialia, 2002. 50(17): p. 4255-4274.
    76. Tadaki, T., et al., Crystal-Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at Percent-Ni Shape Memory Alloy. Transactions of the Japan Institute of Metals, 1986. 27(10): p. 731-740.
    77. Nishida, M., C.M. Wayman, and T. Honma, Precipitation Processes in near-Equiatomic Tini Shape Memory Alloys. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1986. 17(9): p. 1505-1515.
    78. Bataillard, L., J.E. Bidaux, and R. Gotthard, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1998. 78(2): p. 327-344.
    79. Bataillard, L. and R. Gotthardt, Influence of thermal treatment on the appearance of a three step martensitic transformation in NiTi. Journal De Physique Iv, 1995. 5(C8): p. 647-652.
    80. Dlouhy, A., J. Khalil-Allafi, and G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi alloys - an in-situ transmission electron microscopy investigation. Philosophical Magazine, 2003. 83(3): p. 339-363.
    81. Frenzel, J., et al., Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2010. 58(9): p. 3444-3458.
    82. Degraef, M., et al., The Stabilization of Step-Quenched Copper-Zinc-Aluminum Martensite .4. Changes in the Microstructure. Scripta Metallurgica, 1985. 19(5): p. 643-646.
    83. Vanhumbeeck, J., et al., The Stabilization of Step-Quenched Copper-Zinc-Aluminium Martensite .1. The Reverse Transformation Temperatures. Scripta Metallurgica, 1984. 18(9): p. 893-898.
    84. Vanhumbeeck, J. and L. Delaey, The Influence of Heat-Treatment on the Internal-Friction of Cu-Zn-Al Martensite .2. The Peaking-Effect. Zeitschrift Fur Metallkunde, 1984. 75(10): p. 760-763.
    85. Janssen, J., et al., Stabilization of Martensite in Copper-Zinc-Aluminum Alloys. Journal De Physique, 1982. 43(Nc-4): p. 715-720.
    86. Vanhumbeeck, J., D. Segers, and L. Delaey, The Stabilization of Step-Quenched Copper-Zinc-Aluminum Martensite .3. The Annealing-out of Vacancies Measured by Positron-Annihilation. Scripta Metallurgica, 1985. 19(4): p. 477-480.
    87. Burkart, M.W. and T.A. Read, Diffusionless Phase Change in the Indium-Thallium System. Transactions of the American Institute of Mining and Metallurgical Engineers, 1953. 197(11): p. 1516-1524.
    88. Abe, H., et al., Kinetics of the Martensitic Transition in in-Tl Alloys. Physical Review B, 1994. 50(13): p. 9020-9024.
    89. Mehrabi, K., et al., Influence of Quenching Rates on Equiatomic NiTi Ribbons Fabricated by Melt-Spinning. Journal of Materials Engineering and Performance, 2009. 18(5-6): p. 475-478.
    90. Chung, C.Y., C.L. Chu, and S.D. Wang, Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis. Materials Letters, 2004. 58(11): p. 1683-1686.
    91. Urbina, C., et al., Quantitative XRD analysis of the evolution of the TiNi phase transformation behaviour in relation to thermal treatments. Intermetallics, 2010. 18(8): p. 1632-1641.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE