簡易檢索 / 詳目顯示

研究生: 胡馨尹
Hu, Hsin-Yin
論文名稱: 膨脹顯微術:觀測生物分子的非典型方式
Expansion Microscopy: Observing biomolecules in a non-conventional way
指導教授: 朱麗安
Chu, Li-An
口試委員: 黃郁棻
Huang, Yu-Fen
陳壁彰
Chen, Bi-Chang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 51
中文關鍵詞: 超高解析度成像組織膨脹高分子水膠合成膨脹顯微術
外文關鍵詞: Super-Resolution Imaging, Tissue Expansion, Hydrogel Polymer Synthesis, Expansion Microscopy (ExM)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膨脹顯微術(Expansion Microscopy,ExM)是一種透過直接物理性的擴張生物樣本,如細胞和組織,來完成生物分子觀測的全新方法。自從Edward S. Boyden在2015年發表這項技術以來,它已經被廣泛地利用在各種生物分子的觀測上。本文以化學的角度切入膨脹顯微術的發展,從最初的概念到近期的進展進行了簡要回顧,包括:與生物分子融合、可膨脹的高分子水膠合成方式、結合基因定序找出特定基因、乃至和各種超解析度顯微鏡技術的結合以達到最大解析度的目標。在最後一部分,我們回顧了各個膨脹顯微術的主要結果與比較,並發現了一個尚未探索的嶄新研究方向。我們希望本文章能夠為新進該領域的研究者提供系統性的理解,幫助他們掌握其原理與發展。


    Expansion Microscopy (ExM) is an innovative technique that enables the visualization of biomolecules by physically expanding biological samples, such as cells and tissues. Since its introduction by Edward S. Boyden in 2015, this technique has been extensively applied to a variety of biological specimens. This article focuses on the chemical development of ExM, tracing its evolution from the original concept to recent advancements, including biomolecule grafting, polymer synthesis, and the integration of ExM with techniques like gene sequencing and super-resolution microscopy to enhance resolution. In the last section, we list the achievements in the ExM field and identify a novel research direction that remains unexplored. We hope this article provides new researchers entering the field of ExM with a systematic understanding of its principles and developments.

    ACKNOWLEGMENTS.....I ABSTRACT.....II 摘要.....III CONTENTS.....IV LIST of TABLES.....VIII Chapter 1. Introduction.....1 1.1 Background.....1 1.2 Basic concepts and chemical principles of expansion microscopy (ExM).....2 Chapter 2. Anchoring Strategies.....5 2.1 Protein retention.....5 2.1.1 Trifunctional labeling: Acrydite‑modified oligonucleotides.....5 2.1.2 Acryloyl-X, SE; AcX.....6 2.1.3 Methacrylic acid N-hydroxysuccinimidyl ester (MA-NHS) and Glutaraldehyde (GA).....8 2.1.4 Formaldehyde and Acrylamide.....11 2.2 Nucleic acid retention.....13 2.2.1 ExFISH.....13 2.2.2 EASI-FISH.....15 2.3 Membrane retention.....16 2.3.1 TRIvalenT anchOriNg (TRITON).....17 2.3.2 Lipid Expansion Microscopy (LExM).....18 2.4 Multifunctional anchors.....20 2.4.1 Click-expansion microscopy (Click-ExM).....20 2.4.2 Magnify.....22 Chapter 3. Polymer Strategies.....24 3.1 Introduction.....24 3.2 The original 4-fold expansion protocol.....24 3.3 10-fold expansion hydrogel.....25 3.4 iExM.....26 3.5 TREx, NIFS, and Magnify.....29 3.6 Tetra-gel (TG).....29 Chapter 4. Expansion Microscopy Combined with Different Biotechnologies.....32 4.1 Introduction 32 4.1.1 Expansion sequencing (ExSeq).....32 Chapter 5. Expansion Microscopy Combined with Super-Resolution Microscopy.....34 5.1 Introduction.....34 5.1.1 Structured illumination microscopy (SIM).....34 5.1.2 Stimulated emission depletion microscopy (STED).....35 5.1.3 Single-molecule localization microscopy (SMLM).....35 5.1.4 Fluctuation-based super-resolution microscopy.....36 5.2 Combining super-resolution microscopy and ExM.....36 5.2.1 ExSIM.....37 5.2.2 ExSTED.....38 5.2.3 ExSMLM......40 5.2.4 ONE Microscopy (SRRF).....41 Chapter 6. Summary and Application of Expansion Microscopy In The Future.....43 6.1 Summary.....43 6.2 Applications of ExM in the future.....45 References.....48

    1. Dickson, R.M., Cubitt, A.B., Tsien, R.Y., and Moerner, W.E. (1997). On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358. https://doi.org/10.1038/41048.
    2. Klar, T.A., Jakobs, S., Dyba, M., Egner, A., and Hell, S.W. (2000). (STED) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. 97, 8206–8210. https://doi.org/10.1073/pnas.97.15.8206.
    3. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., and Hess, H.F. (2006). (PALM) Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313, 1642–1645. https://doi.org/10.1126/science.1127344.
    4. Rust, M.J., Bates, M., and Zhuang, X. (2006). (STORM) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy. Nat. Methods 3, 793–796. https://doi.org/10.1038/nmeth929.
    5. Huang, B., Bates, M., and Zhuang, X. (2009). Super-Resolution Fluorescence Microscopy. Annu. Rev. Biochem. 78, 993–1016. https://doi.org/10.1146/annurev.biochem.77.061906.092014.
    6. Lelek, M., Gyparaki, M.T., Beliu, G., Schueder, F., Griffié, J., Manley, S., Jungmann, R., Sauer, M., Lakadamyali, M., and Zimmer, C. (2021). (SMLM) Single-molecule localization microscopy. Nat. Rev. Methods Primer 1, 39. https://doi.org/10.1038/s43586-021-00038-x.
    7. Alva, A., Brito‐Alarcón, E., Linares, A., Torres‐García, E., Hernández, H.O., Pinto‐Cámara, R., Martínez, D., Hernández‐Herrera, P., D’Antuono, R., Wood, C., et al. (2022). Fluorescence fluctuation‐based super‐resolution microscopy: Basic concepts for an easy start. J. Microsc. 288, 218–241. https://doi.org/10.1111/jmi.13135.
    8. Chen, F., Tillberg, P.W., and Boyden, E.S. (2015). Expansion microscopy. Science 347, 543–548.
    9. Wassie, A.T., Zhao, Y., and Boyden, E.S. (2019). Expansion microscopy: principles and uses in biological research. Nat. Methods 16, 33–41. https://doi.org/10.1038/s41592-018-0219-4.
    10. Karadag, E., and Saraydin, D. Swelling of Superabsorbent Acrylamide/Sodium Acrylate Hydrogels Prepared Using Multifunctional Crosslinkers.
    11. Maafa, I.M. (2023). Inhibition of Free Radical Polymerization: A Review. Polymers 15, 488. https://doi.org/10.3390/polym15030488.
    12. Safronov, A.P., and Terziyan, T.V. (2015). Formation of chemical networks of acrylamide and acrylic acid hydrogels initiated by ammonium persulfate. Polym. Sci. Ser. B 57, 481–487. https://doi.org/10.1134/S1560090415050140.
    13. Shirangi, M., Sastre Toraño, J., Sellergren, B., Hennink, W.E., Somsen, G.W., and Van Nostrum, C.F. (2015). Methyleneation of Peptides by N , N , N , N -Tetramethylethylenediamine (TEMED) under Conditions Used for Free Radical Polymerization: A Mechanistic Study. Bioconjug. Chem. 26, 90–100. https://doi.org/10.1021/bc500445d.
    14. Ziminska, M., Wilson, J.J., McErlean, E., Dunne, N., and McCarthy, H.O. (2020). Synthesis and Evaluation of a Thermoresponsive Degradable Chitosan-Grafted PNIPAAm Hydrogel as a “Smart” Gene Delivery System. Materials 13, 2530. https://doi.org/10.3390/ma13112530.
    15. Tillberg, P.W., Chen, F., Piatkevich, K.D., Zhao, Y., Yu, C.-C., English, B.P., Gao, L., Martorell, A., Suk, H.-J., Yoshida, F., et al. (2016). (proExM) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992. https://doi.org/10.1038/nbt.3625.
    16. Chozinski, T.J., Halpern, A.R., Okawa, H., Kim, H.-J., Tremel, G.J., Wong, R.O.L., and Vaughan, J.C. (2016). (MA-NHS) Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488. https://doi.org/10.1038/nmeth.3833.
    17. Richards, F.M., and Knowles, J.R. (1968). Glutaraldehyde as a protein cross-linking reagent. J. Mol. Biol. 37, 231–233. https://doi.org/10.1016/0022-2836(68)90086-7.
    18. Migneault, I., Dartiguenave, C., Bertrand, M.J., and Waldron, K.C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 37, 790–802. https://doi.org/10.2144/04375RV01.
    19. Wang, M.Y., Wang, Y.P., Yu, Y.T., Wang, Y.M., and Ni, J.H. (2014). Glutaraldehyde-Cross-Linked Poly(acrylic acid-co-acrylamide)/Poly(vinyl alcohol) Superabsorbent Membranes. Mater. Sci. Forum 789, 194–200. https://doi.org/10.4028/www.scientific.net/MSF.789.194.
    20. Khan, M.A., Azad, A.K., Safdar, M., Nawaz, A., Akhlaq, M., Paul, P., Hossain, M.K., Rahman, M.H., Baty, R.S., El-kott, A.F., et al. (2022). Synthesis and Characterization of Acrylamide/Acrylic Acid Co-Polymers and Glutaraldehyde Crosslinked pH-Sensitive Hydrogels. Gels 8, 47. https://doi.org/10.3390/gels8010047.
    21. Ku, T., Swaney, J., Park, J.-Y., Albanese, A., Murray, E., Cho, J.H., Park, Y.-G., Mangena, V., Chen, J., and Chung, K. (2016). (MAP) Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981. https://doi.org/10.1038/nbt.3641.
    22. Chung, K., and Deisseroth, K. (2013). CLARITY for mapping the nervous system. Nat. Methods 10, 508–513. https://doi.org/10.1038/nmeth.2481.
    23. Chen, F., Wassie, A.T., Cote, A.J., Sinha, A., Alon, S., Asano, S., Daugharthy, E.R., Chang, J.-B., Marblestone, A., Church, G.M., et al. (2016). (ExFISH) Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684. https://doi.org/10.1038/nmeth.3899.
    24. Wang, Y., Eddison, M., Fleishman, G., Weigert, M., Xu, S., Wang, T., Rokicki, K., Goina, C., Henry, F.E., Lemire, A.L., et al. (2021). EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361-6377.e24. https://doi.org/10.1016/j.cell.2021.11.024.
    25. Wen, G., Vanheusden, M., Acke, A., Valli, D., Neely, R.K., Leen, V., and Hofkens, J. (2020). (TRITON) Evaluation of Direct Grafting Strategies viaTrivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy. ACS Nano 14, 7860–7867. https://doi.org/10.1021/acsnano.9b09259.
    26. White, B.M., Kumar, P., Conwell, A.N., Wu, K., and Baskin, J.M. (2022). (LExM) Lipid Expansion Microscopy. J. Am. Chem. Soc. 144, 18212–18217. https://doi.org/10.1021/jacs.2c03743.
    27. Sun, D., Fan, X., Shi, Y., Zhang, H., Huang, Z., Cheng, B., Tang, Q., Li, W., Zhu, Y., Bai, J., et al. (2021). (Click-ExM) enables expansion microscopy for all biomolecules. Nat. Methods 18, 107–113. https://doi.org/10.1038/s41592-020-01005-2.
    28. Hu, Y., Chu, X., Chen, T., Pan, Q., Liu, C., Yi, J., and Chu, X. (2020). Improving resolving ability of expansion microscopy by varying crosslinker concentration. Chem. Commun. 56, 4176–4179. https://doi.org/10.1039/D0CC00052C.
    29. Truckenbrodt, S., Maidorn, M., Crzan, D., Wildhagen, H., Kabatas, S., and Rizzoli, S.O. (2018). X10 expansion microscopy enables 25‐nm resolution on conventional microscopes. EMBO Rep. 19. https://doi.org/10.15252/embr.201845836.
    30. Chang, J.-B., Chen, F., Yoon, Y.-G., Jung, E.E., Babcock, H., Kang, J.S., Asano, S., Suk, H.-J., Pak, N., Tillberg, P.W., et al. (2017). (iExM) Iterative expansion microscopy. Nat. Methods 14, 593–599. https://doi.org/10.1038/nmeth.4261.
    31. Damstra, H.G., Mohar, B., Eddison, M., Akhmanova, A., Kapitein, L.C., and Tillberg, P.W. (2022). (TREx) Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy. eLife 11, e73775. https://doi.org/10.7554/eLife.73775.
    32. Klimas, A., Gallagher, B.R., Wijesekara, P., Fekir, S., DiBernardo, E.F., Cheng, Z., Stolz, D.B., Cambi, F., Watkins, S.C., Brody, S.L., et al. (2023). Magnify is a universal molecular anchoring strategy for expansion microscopy. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01546-1.
    33. Gao, R., Yu, C.-C., Gao, L., Piatkevich, K.D., Neve, R.L., Munro, J.B., Upadhyayula, S., and Boyden, E.S. (2021). (TG) A highly homogeneous polymer composed of tetrahedron-like monomers for high-isotropy expansion microscopy. Nat. Nanotechnol. 16, 698–707. https://doi.org/10.1038/s41565-021-00875-7.
    34. Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Ferrante, T.C., Terry, R., Turczyk, B.M., Yang, J.L., Lee, H.S., Aach, J., et al. (2015). Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458. https://doi.org/10.1038/nprot.2014.191.
    35. Alon, S., Goodwin, D.R., Sinha, A., Wassie, A.T., Chen, F., Daugharthy, E.R., Bando, Y., Kajita, A., Xue, A.G., Marrett, K., et al. (2021). (ExSeq) Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656. https://doi.org/10.1126/science.aax2656.
    36. Gustafsson, M.G.L. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION. J. Microsc. 198, 82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x.
    37. Schnitzbauer, J., Strauss, M.T., Schlichthaerle, T., Schueder, F., and Jungmann, R. (2017). Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228. https://doi.org/10.1038/nprot.2017.024.
    38. Dertinger, T., Colyer, R., Iyer, G., Weiss, S., and Enderlein, J. (2009). Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. 106, 22287–22292. https://doi.org/10.1073/pnas.0907866106.
    39. Gustafsson, N., Culley, S., Ashdown, G., Owen, D.M., Pereira, P.M., and Henriques, R. (2016). Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 7, 12471. https://doi.org/10.1038/ncomms12471.
    40. Halpern, A.R., Alas, G.C.M., Chozinski, T.J., Paredez, A.R., and Vaughan, J.C. (2017). (ExSIM) Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. ACS Nano 11, 12677–12686. https://doi.org/10.1021/acsnano.7b07200.
    41. Gao, M., Maraspini, R., Beutel, O., Zehtabian, A., Eickholt, B., Honigmann, A., and Ewers, H. (2018). (ExSTED) Expansion Stimulated Emission Depletion Microscopy. ACS Nano 12, 4178–4185. https://doi.org/10.1021/acsnano.8b00776.
    42. Zwettler, F.U., Reinhard, S., Gambarotto, D., Bell, T.D.M., Hamel, V., Guichard, P., and Sauer, M. (2020). (ExSMLM) Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy. Nat. Commun. 11, 3388. https://doi.org/10.1038/s41467-020-17086-8.
    43. Shaib, A.H., Chouaib, A.A., Chowdhury, R., Mihaylov, D., Zhang, C., Imani, V., Georgiev, S.V., Mougios, N., Monga, M., Reshetniak, S., et al. (2022). (ONE microscopy) Visualizing proteins by expansion microscopy (Biophysics) https://doi.org/10.1101/2022.08.03.502284.
    44. Navalón-López, M., Castells-Colldeforns, P., Pujals, S., Fornaguera, C., and Borrós, S. (2024). PExM: polyplex expansion microscopy for cell trafficking studies. Nanoscale 16, 11969–11976. https://doi.org/10.1039/D4NR00917G.

    QR CODE