研究生: |
鄭立揚 Jheng, Li-Yang |
---|---|
論文名稱: |
具有3號位簡單型烷氧基或官能化烷氧基噻吩之酸催化聚合研究及性質探討 The Study of Simple and Functionalized 3-Alkoxythiophenes in Acid-catalyzed Polymerization and Their Properties |
指導教授: |
韓建中
Han, Chien-Chung |
口試委員: |
彭之皓
Peng, Chi-How 李志聰 Lee, Jyh-Tsung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 185 |
中文關鍵詞: | 高分子 、噻吩 、有機化學 |
外文關鍵詞: | polymer, thiophene, organic chemistry |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文針對聚噻吩的酸催化聚合,藉由對其三號位上做側鏈修飾,像是改變鏈長,或是改變側鏈性質,並搭配中性的甲氧基離去基,來做一系列的酸催化聚合現象探討。同時探討不同烷氧基側鏈修飾之聚噻吩的物性變化如溶解度,以及烷氧基側鏈修飾之聚噻吩應用在製作導電膜後導電能力的表現,最後利用(親油性烷氧基側鏈修飾之聚噻吩)和(親水性烷氧基側鏈修飾之聚噻吩)來做團簇共聚合,合成出具有一端親水性和另一端親油性的嵌段共聚物。
首先我們合成了各種含烷氧基側鏈之噻吩單體,並使用中性甲氧基做為離去基。改變不同的聚合條件如時間、溫度、催化酸量,觀察其數均分子量、重均分子量、多分散性指數、產率的趨勢變化。同時也發現當聚合反應有著其他競爭物種如甲氧基離去基脫去後產生之甲醇或是噻吩單體中存在的副產物,皆會影響聚合反應,使得聚合反應緩慢或是終止反應。
之後我們對不同烷氧基側鏈之聚噻吩,使用不同溶劑做一系列的溶解度測試,結果發現當烷氧基側鏈上只有純碳鏈取代時,其高分子對於一些極性小的溶劑如甲苯、苯等,展現非常好的溶解度。反之,當烷氧基側鏈有越多氧原子取代時,其高分子則能溶於極性較大的溶劑如N-甲基吡咯烷酮、二甲基亞碸等,甚至能使用高極性的溶劑將高分子溶解後與水共溶達到不錯的溶解程度。然後再選用高極性、高沸點的溶劑將高分子溶解後,用聚對苯乙烯磺酸進行酸摻雜製作成導電膜,再量測導電度能達到~10-3 S/cm,其後再經由碘蒸氣摻雜後導電度能達到~10-2 S/cm。
最後,我們再將(親油性烷氧基側鏈修飾之聚噻吩)和(親水性烷氧基側鏈修飾之聚噻吩),進行共聚合的條件測試,合成出具有一端親水性和另一端親油性的嵌段共聚物增加日後的加工性及應用性。
In this thesis, we focus on poly(3-alkoxythiophene) in acid-catalyzed polymerization by modifying different alkoxy group side chain on third position of thiophene monomer. With different side chain on third position of thiophene, the conjugated polymers can reveal different physical properties such as solubility.
Moreover, we also take poly(3-alkoxythiophene) as conducting membrane to run conductivity test. Finally, we synthesized the block copolymer with two types of hydrophilic and hydrophobic poly(3-alkoxythiophene)s in copolymerization.
First, we synthesized several 3-alkoxythiophenes such as 3-(octyloxy)thiophene, 3-(2-methoxyethoxy)thiophene, 3-(2-(2-methoxyethoxy)ethoxy)thiophene , 3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)thiophene with neutral methoxy group as leaving group(LG) to do acid-catalyzed polymerization. We observe the acid-catalyzed polymerization phenomenon and the tendency of Mn、Mw、PDI、Yield values by changing different polymerization condition such as reaction time, temperature, the amount of catalytic acid and discuss the results in detail. We also figure out, during the polymerization, the methanol which is produced by methoxy leaving group or mirror product of 3-alkoxythiophenes will cause the polymerization slow down or terminated.
Second, we run the solubility test of these poly(3-alkoxythiophene)s with a series of different organic solvents. With long carbon side chain, the poly(3-alkoxythiophenes) reveal good solubility in nonpolar solvents like toluene, benzene. Otherwise, With more glycol ether side chain(-O-CH2-CH2-O-), the poly(3-alkoxythiophene)s tend to dissolve in high polar solvents like NMP, DMSO.
Then, we use different solvents to make conducting membranes with PSS (polystyrene sulfonate acid) as a doping reagent.
After PSS doping, the conductivity is up to 10-3 S/cm. Furthermore, we successfully enhance the conductivity to 10-2 S/cm by the doping with I2 vapor.
Finally, we synthesized the block copolymer with two types of hydrophilic and hydrophobic poly(3-alkoxythiophene)s via block-copolymerization in order to enhance their processability and future’s application potentials.
1.Shirakawa, H.; Louis, e. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem, Commun. 1997, 578.
2. Dai, L. Intelligent macromolecules for smart devices, Springer New York, 2003.
3. Balint, R., Cassidy, N. J., Cartmell, S. H. Acta Biomater. 2014, 10, 2341.
4. Das, T. K., Prusty, S. Polym. -Plast. Technol. 2012, 51, 1487.
5. Gerard, M., Chaubey, A., Malhotra, B. D. Biosens. Bioelectron. 2002, 17, 345.
6. McCullough, R. D. Adv. Mater. 1998, 10, 93.
7.Osaka, I., McCullough, R. D. Accounts of Chem. Res. 2008, 41, 1202.
8. Chen, T. A., Wu, X. M., Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233.
9. Loewe, R. S., Ewbank, P. C., Liu, J. S., Zhai, L., McCullough, R. D. Macromolecules 2001, 34, 4324.
10. Iraqi, A., Barker, G. W. J. Mater. Chem. 1998, 8, 25.
11. Guillerez, S., Bidan, G. Synthetic Met. 1998, 93, 123.
12. Bonillo, B., Swager, T. M. J. Am. Chem. Soc. 2012, 134, 18916.
13. (a)Han, C. C.*; Arumugam, B. “Method for forming conjugated heteroaromatic homopolymer and copolymer, and products thereof”, US patent application 13/662, 533 (Oct 28, 2012), US 2014-0121326 A1 (May 1, 2014).
(b)韓建中*; 巴樂書 “共軛雜環芳香類均聚物及共聚物的形成方法以及其產物” 2013/4/11申請; 2015/8/7 核准; 中華民國發明專利 I504629 (2015), 專利權期2015/10/21-2033/4/10.
14. Balasubramanian, A.; Ku, T. C.; Shih, H. P.; Suman, A.; Lin, H. J.; Shih, T. W.; Han, C. C. Polym. Chem. 2014, 5, 5928.
15. Sperotto, E., van Klink, G. P., van Koten, G., de Vries, J. G. Dalton Trans. 2010, 39, 10338.
16. Zhang, S. L., Ding, Y. Q. Organometallics 2011, 30, 633.
17. Sambiagio, C., Marsden, S. P., Blacker, A. J., McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
18. Beletskaya, I. P., Cheprakov, A. V. Coordin. Chem. Rev. 2004, 248, 2337.
19. Zhang, S. L., Zhu, Z. Z., Ding, Y. Q. Dalton T. 2012, 41, 13832.
20. 郭芳伶 碩士論文, 清華大學, 2015.
21. 夏聖捷 碩士論文, 清華大學, 2016.
22. Peng Lin, Feng Yan, Jinjiang Yu, Helen L. W. Chan, Mo Yang. Adv. Mater., 2010.
23. Veeran Gowda Kadajji and Guru V. Betageri. Polymers 2011, 3, 1972-2009.
24. Jinseck Kim, Ayyanar Siva, In Young Song, Taiho Park. Elsevier Polymer, 2011, 3704, 3709.
25. Samodha S. Gunathilake, Harsha D. Magurudeniya, Peishen Huang, Hien Q. Nguyen, Elizabeth A. Rainbolt, Mihaela C. Stefan, and Michael C. Biewer. Poly Chem, 2013.
26. F. Huang, H. Wu and Y. Cao, Chem. Soc. Rev., 2010, 39, 2500–
2521.
27. Shaoqing Zhang, Long Ye, Hao Zhang and Jianhui Hou. Elsevier Rev., vol. 11, 2016.
28. K. Kuroda and T. M. Swager, Chem. Com. 2003, 26–27.
29. S. Shi and F. Wudl, Macromolecules, 1990, 23, 2119.
30. H. Häger and W. Heitz, Macromol. Chem. Phys. 1998, 199, 1821.
31. M. Stork, B. S. Gaylord, A. J. Heeger and G. C. Bazan, Adv. Mater. 2002.