研究生: |
譚家彥 Tan, Chia-Yen |
---|---|
論文名稱: |
鎳鈦記憶合金應用於覆晶下金屬塊對焊錫球接點可靠度影響之分析 Application of NiTi shape memory alloy as under bump metallurgy to promote solder joint reliability |
指導教授: |
杜正恭
Duh, Jeng-Gong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 形狀記憶合金 |
外文關鍵詞: | shape memory alloy |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面黏著技術(Surface Mount Technology)包括球腳格狀陣列(Ball Grid Array)以及覆晶技術(Flip Chip Technology)已經廣泛被使用在現今的微電子構裝技術中。在表面黏著技術中最常見的問題常是在工作環境下,因為不同材料間的熱膨脹係數差異,特別是晶片端(chip)與板端(board)的差異造成熱應力導致翹曲(warpage), 材料分層(delamination) 以及塑性應變累積在彈性係數較小的焊錫球內,最終造成裂縫並且破壞。封裝材料本身的強度以及封裝的架構與製程都是影響熱應力問題的關鍵。
在本研究中,利用鎳鈦記憶合金來當作覆晶下金屬塊結合在焊錫球接點上。鎳鈦記憶合金與有兩種獨特的性質,一是形狀記憶效果(shape memory effect),在室溫附近的麻田相變化可使得鎳鈦合金在低溫時所受到的變形因相變化而回復,可達約35%的形變回復量。二是擬彈性質(superelasticity),在沃斯田相的鎳鈦記憶合金在承受一超過極限值的應力時,會有應力引發麻田相變化(stress induced martensitic transformation),其可承受應變大幅增加,相當於提供合金額外的彈性質。本研究的目標在於探討記憶合金應用在焊錫球接點上對於可靠度的影響。
利用物理氣相蒸鍍的方式,多層金屬層包括鎳鈦記憶合金層可以被製作出來。利用物理氣相蒸鍍方式所製備的鎳鈦記憶合金經由X光繞射分析(X-ray diffraction),熱差分析(differential scanning calorimetry) 與穿透式電子顯微鏡(transmission electron microscope)驗證鎳鈦記憶合金相的存在。此外,由於利用物理氣相蒸鍍方式製備的鎳鈦記憶合金為非晶(amorphous)結構,必須經過後退火過程使其轉換成結晶型態。然而高退火溫度會造成製程上的困難,故在本研究中嘗試添加第三元素銅來降低結晶溫度。
利用物理氣相蒸鍍方式製備的記憶合金覆晶下金屬塊與一般的鎳銅金屬塊,利用黃光製程製備聚亞醯胺(polyimide)保護層以及固定大小焊點(pad),在利用錫銀銅焊料以及網版印刷方式製備錫球接點。製備好的焊球接點在一次回焊與印刷電路板接合以製備成品。製備好的成品在經過不同次數後的熱震盪(thermal shock)、熱循環(thermal cycling)以及彎曲測試(bend test) 後,觀察介面接點以及焊錫球的推球與拉球強度變化,探討記憶合金對可靠度的影響。
除了實驗部分以外,也利用有限元素分析以及數學上的三層結構應力分析方式來分析多層材料間因不同材料性質在溫度循環下所造成的熱應力以及應變的大小與分佈,探討在錫球與晶片間的不同金屬介層,以及介層不同厚度對於應力應變的影響。
References
1. M. Amagai, Characterization of chip scale packaging materials, Microelectron Relia.b, 39 (1999) 1365.
2. G. Kelly, C. Lyden, Lawton W, Barrett J, Saboui A, Pape H, Peters HJB, Importance of molding compound chemical shrinkage in the stress and warpage analysis of PQFPs ,IEEE Trans. Compon. Packag. Technol. 19 (1996) 296
3. W.J. Buehler, J.V. Gilfrich, R.C. Wiley, Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, J. Appl. Phys., 34 (1963) 1475.
4. Otsuka and X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511.
5. X.Y. Huang, G.J. Ackland, K.M. Rabe, Crystal structures and shape-memory behaviour of NiTi, Nature Mater., 2 (2003) 307
6. J.K. Allafi, X. Ren, G. Eggeler, The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys, Acta Mater., 50 (2002) 793
7. S. Sanjabi, Y.Z. Cao, S.K. Sadrnezhaad, Z.H. Barber, Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets, Journal of Vacuμm Science & Technology, 23 (2005) 1425
8. T. Lehnert, H. Grimmer, P. Boni, M. Horisberger, R. Gotthardt, Characterization of shape-memory alloy thin films made up from sputter-deposited Ni/Ti multilayers, Acta Mater. 48(2000) 4065
9. T. Lehnert, S. Crevoiserat, R. Gotthardt, Transformation properties and microstructure of sputter-deposited Ni-Ti shape memory alloy thin films, J. Mater. Sci. 37 (2002) 1523
10. Dutta, B.S. Majμmdar, D. Pan, W.S. Horton, W. Wright, Z.X. Wang, Development of a novel adaptive lead-free solder containing reinforcements displaying the shape-memory effect, J. Electron. Mater. 33 (2004) 258
11. Dutta, D. Pan, S. Ma, B.S. Majμmdar, S. Harris, Role of shape-memory alloy reinforcements on strain evolution in lead-free solder joints, J. Electron. Mater. 35 (2006) 1902
12. H. Rosner, A.V. Shelyakov, A.M. Glezer, A study of an amorphous-crystalline structured Ti-25Ni-25Cu (at.%) shape memory alloy, Mater. Sci. Eng. A, 273 (1999) 733
13. J.Z. Chen, S.K. Wu, Crystallization temperature and activation energy of rf-sputtered near-equiatomic TiNi and Ti50Ni40Cu10 thin films ,J. Non-Crystal. Sol. 288 (2001) 159
14. Y. Kawamura , A. Gyobu , H, Horikawa , T. Saburi, Effect on martensitic transformation and precipitation with crystallization of sputter-deposited Ti-rich Ti-Ni alloy films, J. Japan Insistitute of metal. 60 (1996) 921
15. S. Sanjabi, S.K. Sadmezhaad, K.A. Yates, Z.H. Barber,Growth and characterization of TixNi1-x shape memory thin films using simultaneous sputter deposition from separate elemental targets, Thin Solid Films, 491 (2005) 190-196
16. S. Sanjabi, Y.Z. Cao, S.K. Sadrnezhaad, Z.H. Barber, Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets, J. Vac. Sci. & Technol. A , 23 (2005) 1425
17. W.W Lee, L.T. Nguyen, G.S. Selvaduray, Solder joint fatigue models: review and applicability to chip scale packages, Microelec. Relia., 40 (2000) 231
18. J.H.L. Pang, D.Y.R. Chong, T.H. Low, Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models, IEEE Tran. Adv. Pack., 24 (2001) 499
19. C. Basaran, R. Chandaroy, Finite element simulation of the temperature cycling tests, IEEE Trans. Compo. Packag. Technol., 20 (1997) 530
20. J.H. Lau, Ball grid array technology, McGraw-Hill, New York, 1995
21. P.L. Chang, C.T. Tsai, Finding the niche position — competition strategy of Taiwan's IC design industry, Technovation, 22 (2002) 101
22. P.A Totta, R.P. Sopher, SLT device metallurgy and its monolithic extensions, IBM J.Res. Develop. 13 (1969) 226
23. J.H. Lau and S.W.R Lee, Chip Scale Package, CSP: Design, Materials, Process and Application, McGraw-Hill, New York, 1999
24. W.T. Chen, Flip Chip Technology and End Market, ASE, 2004
25. C.A. Harper, Electronic Packaging and Interconnection Handbook, 3rd edition, McGraw-Hill, New York, 2000
26. W.R.Lewis, Notes on soldering, Tin Reseach Institiue. 66. 1961
27. M. Abtew and G. Selvaduray, Lead free solder in microelectronic package, Mater. Sci. En. R27 (2000) 95.
28. Y. Kariya, Y. Hirata and M. Otsuka, Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints, J Electron, Mater. 28 (1999) 1263
29. Yoon JW, Noh BI, Lee YH, et al, Mechanical reliability of Sn-rich Au-Sn/Ni flip chip solder joints fabricated by sequential electroplating method, 48 (2008) 1864
30. J.H. Lau, Flip chip technology, McGraw-Hill, New York, (1996) 26
31. F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974
32. R.C Agarwala and S. Ray, Variation of structure in electroless Ni-P films with phosphorous content, Z. Metallkd. 79 (1988) 472
33. K. Zeng and J.K. Kivilahti, Use of multicomponent phase diagram for predicting phase evolution in solder/conductor systems, J. Electron. Mater. 30 (2001) 35
34. T.B. Massalski: H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, (1990) 1481
35. H.K. Kim, K.N. Tu and P.A. Totta, Ripening-asisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer, Appl. Phys. Lett. 68 (1996) 2204
36. S.K.Kang, R.S. Rai and S. Purrshothaman, Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders, J. Electron. Mater., 25 (1996) 1113.
37. P.G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin film and Ni foils, J. Appl. Phys. 86 (1999)6746
38. G. Ghosh, Kinetics of interfacial reaction between eutectic SnPb solder and Cu/Ni/Pd metallizations, J. Electron. Mater. 28 (1999)
39. John H. Lau, Thermal stress and strain in Microelectronics packahing, 1st edn. Van Nostrand Reinhold. New York, 1993
40. J.Y.H. Chia, B. Cotterell, T.C. Chai, The mechanics of the solder ball shear test and the effect of shear rate, Mater. Sci. Eng. A, 417 (2006) 259
41.. www. emeraldinsight.com
42. J.C. Lin, H.C. Cheng, K.N. Chiang, Design and analysis of wafer-level CSP with a double-pad structure, IEEE Trans. Compon. Packag. Technol, 28 (2005) 117
43. Q. Zhu, L.Y. Ma, S.K. Sitaraman, Development of G-Helix structure as off-chip interconnect, J. Electron. Pack., 26 (2004) 237
44. K.N. Tu, K. Zeng, Tin-lead (SnPb) solder reaction in flip chip technology, Mater. Sci. Eng. R-Reports, 34 (2001) 1
45. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, C.Y. Li, Reactions of lead-free solders with CuNi metallizations, J. Electron. Mater, 29 (2000) 1194
46. L.C. Chang, T.A. Read, Plastic Defromation and Diffustionless Phase Changes in Metals; The Bold-Cadmiμm Beta Phase, Trans. AIME 191 (1951) 47
47. W.J. Byehler, J. V. Gilfrich, and R.C. Wiley, Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, J. Appl. Phys., 34 (1963) 1475
48. D. E. Hodgson, M. H. Wu, and R. J. Biermann, Metals Handbook tenth edition., ASM International, Ohio, 2 (1990) 897
49. J. Li, C.C. Chou, C.M. Wayman, Martensitic transformation and the shape memory effect in an Fe-33 Ni-12 Co-5 Ti alloy, Mater. Chem. Phy. 34 (1993) 14
50. J. Ryhänen, Biocompatibility evaluation of nickel-titaniμm shape memory metal alloy OULUN YLIOPISTO, 1999
51. J.E. Reynolds, M.B. Bever, On the Reversal of the Strain-Induced Martensitic Transformation in the Copper-Zinc System, Trans. Met. Soc. AIME., 194 (1952) 1065
52. J.G. Boyd , D.C. Lagoudas, A thermodynamical constitutive model for shape memory materials, International Journal of Plasticity, 12 (1996) 805
53. J.A. Shaw, S. Kyriakydes, Thermomechanical aspects of NiTi, J. Mechan. Phy. Sol. 43 (1995)1243
54. J.K Allafi, X. Ren, G. Eggeler, The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys, Acta Materia., 50 (2002) 793
55. R. Manoharan, J.B. Goddenough, Methanol Oxidation in Acid on Ordered NiTi, J. Mater. Chem. 2 (1992) 875
56. C. Kuphasuk, Y. Oshida, C.J. Andres, S.T. Hovijitra, M.T. Barco, D.T. Brown, Electrochemical corrosion of titaniμm and titaniμm-based alloys, J. Prosthe. Dentis., 85 (2001) 195
57. X. Wang, J.J. Vlassak, Crystallization kinetics of amorphous NiTi shape memory alloy thin films, Scripta Mater., 54 (2006) 925
58. D.P. Dautovich, Z. Melkvi, G.R. Purdy, C.V. Stager, Calorimetric Study of a Diffusionless Phase Transition in TiNi, J. Appl.Phys. 37 (1966) 2513
59. R.D. Cook, Concepts and applications of finite element analysis New York : Wiley, 2002
60. K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys, The Indian Institute of Metals, (1990)
61. Olsen, D. R., H. M. Berg, “Properties of die bond alloys relating to thermal fatigue “ IEEE Trans. Compo. Hybri. Manufact. Techno., CHMT-2(2) (1979) 171
62. M.Y Tsai, Y.C. Chen, S. W. Ricky Lee, IEEE Tran. Compo. Pack. Tech., 31 (2008)