簡易檢索 / 詳目顯示

研究生: 翁崇瑄
Weng, Chung-Hsiung
論文名稱: 熔鹽合成法製備鈦酸鋇奈米線及其壓電性質和應用
Piezoelectric Properties and Applications of Barium Titanate Nanowires Synthesized by Molten Salt Method
指導教授: 林樹均
Lin, Su-Jien
口試委員: 李勝隆
洪建龍
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 159
中文關鍵詞: 奈米線鈦酸鋇壓電
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用 K2Ti4O9 奈米線作為反應前驅物,而後再將 K2Ti4O9 奈米線與BaCO3粉末在共晶鹽 KCl-NaCl 中以熔鹽合成法透過離子置換過程成功製備出 BaTiO3 奈米線,其反應是利用self-sacrificing template effect 及 Kirkendall effect,所合成的產物形貌與前驅物 K2Ti4O9 奈米線相近,而後將 BaTiO3 奈米線放置於高溫爐內於退火 2 小時使得表面平坦化及奈米線反應更完全,並且晶粒排列成長成單晶結構。
    本研究以壓電力顯維鏡來量測 BaTiO3 奈米線的壓電性質,壓電量測分別以 VPFM 及 LPFM 兩種模式量測,其中以 VPFM 模式量測下壓電係數 d33 經計算約為 0.89 pm/V,而以 LPFM 模式量測下測得的壓電係數 d15 為 51.9 pm/V,以 LPFM 模式所偵測到的壓電係數相當優良,證明 BaTiO3奈米線有良好的壓電特性。本研究利用 BaTiO3 奈米線與 PDMS 高分子混合成功製備出奈米發電機作為應用,並添加奈米碳管幫助分散奈米線分散,當添加12 wt % BaTiO3 奈米線及1 wt % 奈米碳管時奈米發電機可得到最高的輸出電壓及輸出電流,約為 1.8 V及125 nA,而在極化處理過後奈米發電機的輸出電壓及輸出電流更可達到 3.4 V及300 nA,由此可證明由 BaTiO3 奈米線所製作而成的奈米發電機具有絕佳的發電能力。


    摘要 I 致謝 II 目錄 VI 圖目錄 IX 一、前言 1 二、文獻回顧 3 2.1. 奈米科技的發展 3 2.2. 一維 (one dimensional,1-D) 奈米材料 4 2.3. 奈米線的合成 5 2.3.1.模板合成法 (template-girected synthesis) 6 2.3.2.溶液-液相-固相法 (Solution-Liquid-Solid Method, SLS) 7 2.3.3.水熱化學合成法 (hydrothermal chemical synthesis) 7 2.3.4.溶膠凝膠 (Sol-gel) 法 8 2.3.5.熔鹽合成法 (molten-salt synthesis) 9 2.4. K-Ti-O 系統之結構與特性 13 2.4.1.K2Ti4O9 之結構與特性 14 2.5. Ba-Ti-O 系統 16 2.5.1.BaTiO3 之結構 16 2.6. BaTiO3 之性質 21 2.6.1.介電性質 21 2.6.2.鐵電性質 24 2.6.3.鐵磁性 30 2.6.4.多鐵性 33 2.6.5.壓電性質 34 2.6.6.壓電係數 (piezoelectric constant) 38 2.7.壓電力顯微鏡 (Piezoresponse force microscopy ; PFM) 41 2.7.1.原理 46 2.8. BaTiO3奈米線之壓電應用-奈米發電機 50 2.9. BaTiO3 奈米線之其他應用 54 三、實驗步驟 56 3.1.實驗流程 56 3.2.K2Ti4O9 奈米線的合成 58 3.3.熔鹽合成法 59 3.3.使用之儀器 61 3.3.1.真空高溫爐 61 3.3.2.場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope;FESEM) 62 3.3.3.穿透式顯微鏡 62 3.3.4.能量散射光譜儀 63 3.3.5.X-ray 繞射分析 64 3.3.6.聚焦離子束與電子束顯微系統 (Focus Ion Beam, FIB) 65 3.3.7.壓電力顯微鏡 (Piezoelectric Force Microscope;PFM) 66 3.3.8. 旋轉塗佈機 (Spin Coater) 67 四、結果與討論 68 4.1 反應前驅物 K2Ti4O9 奈米線之合成 68 4.1.2 K2Ti4O9 奈米線成分分析與微結構探討 70 4.2.BaTiO3 奈米線之合成 74 4.2.1.BaTiO3 奈米線之表面形貌與微結構成分分析 74 4.2.2.BaTiO3 奈米線之成長機制 80 4.3.BaTiO3 奈米線製程改良 86 4.3.1.退火處理 86 4.3.2.反應溫度對BaTiO3 奈米線之影響 92 4.3.3.添加分散劑對 BaTiO3 奈米線形貌之影響 98 4.3.4.改良參數後所合成之BaTiO3 奈米線 101 4.4. BaTiO3奈米線之壓電性質量測 104 4.4.1.以 VPFM 進行壓電訊號量測 104 4.4.2.以 LPFM 進行壓電訊號量測 108 4.4.3.不同線徑之BaTiO3奈米線之壓電性質量測 114 4.5. BaTiO3 奈米線應用之研究 - 奈米發電機 (nanogenerator) 118 4.5.1 BaTiO3奈米發電機之構造及原理 118 4.5.2.BaTiO3奈米線配置比例對奈米發電機發電能力之影響 123 4.5.3.奈米發電機之內部結構觀察 128 4.5.4.奈米發電機發電能力確認 132 4.6. 添加奈米碳管對奈米發電機發電能力之影響 135 4.6.1.製作方法及原理 135 4.6.2.添加奈米碳管後之奈米發電機發電能力量測 137 4.7. 極化處理對奈米發電機性能之影響 142 4.8. 奈米發電機實際應用之研究 146 五、 結論 149 六、 未來研究方向 151

    1.Edelstein, A.S. and R.C. Cammarata, Nanomaterials : synthesis, properties, and applications. 1996, Bristol ; Philadelphia: Institute of Physics Pub. xxii, 596 p.
    2.Nalwa, H.S., Handbook of nanostructured materials and nanotechnology. 2000, San Diego: Academic Press.
    3.Shalaev, V.M. and M. Moskovits, Nanostructured materials : clusters, composites, and thin films. ACS symposium series,. 1997, Washington, DC: American Chemical Society. ix, 268 p.
    4.Bawendi, M.G., M.L. Steigerwald, and L.E. Brus, The quantum-mechanics of larger semiconductor clusters (Quantum Dots). Annual Review of Physical Chemistry, 1990. 41: p. 477-496.
    5.Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
    6.Martin, C.R., Nanomaterials - a membrane-based synthetic approach. Science, 1994. 266(5193): p. 1961-1966.
    7.Yong, Q., W. Xudong, and W. Zhong Lin, Microfibre–nanowire hybrid structure for energy scavenging. Nature, 2008. 451: p. 809-813.
    8. Mangalam, R.V.K., et al., Multiferroic properties of nanocrystalline BaTiO3. Solid State Communications, 2009. 149(1-2): p. 1-5.
    9. Yang, P., Y. Wu, and R. Fan, Inorganic semiconductor nanowires. International Journal of Nanoscience, 2002. 1(1): p. 1-39.
    10. Wu, C.G. and T. Bein, Conducting carbon wires in ordered, nanometer-sized channels. Science, 1994. 266(5187): p. 1013-1015.
    11. Li, S., et al., Single-crystalline BiFeO3 nanowires and their ferroelectric behavior. Applied Physics Letters, 2012. 101(19).
    12. Chen, X., et al., 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Letters, 2010. 10(6):p. 2133-2137.
    13.Jung, J.H., et al., Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology, 2012. 23(37).
    14.Zeng, W., et al., Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy & Environmental Science, 2013. 6(9): p. 2631-2638.
    15.Lin, Z.-H., et al., BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. Journal of Physical Chemistry Letters, 2012. 3(23): p. 3599-3604.
    16.Park, K.-I., et al., Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons. Advanced Materials, 2012. 24(22): p. 2999-3004.
    17.Lourie, O.R., et al., CVD Growth of Boron Nitride Nanotubes. Chemistry of Materials, 2000. 12(7): p. 1808-1810.
    18.Markowitz, P.D., et al., Phase Separation in AlxGa1-xAs Nanowhiskers Grown by the Solution−Liquid−Solid Mechanism. Journal of the American Chemical Society, 2001. 123(19): p. 4502-4511.
    19.Trentler, T.J., et al., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science, 1995. 270(5243): p. 1791-1794.
    20.Trentler, T.J., et al., Solution−Liquid−Solid Growth of Indium Phosphide Fibers from Organometallic Precursors:  Elucidation of Molecular and Nonmolecular Components of the Pathway. Journal of the American Chemical Society, 1997. 119(9): p. 2172-2181.
    21.Mao, Y., et al., Environmentally friendly methodologies of nanostructure synthesis. Small, 2007. 3(7): p. 1122-1139.
    22. Joshi, U.A. and J.S. Lee, Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires. Small, 2005. 1(12): p. 1172-1176.
    23.Hernandez, B.A., et al., Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chemistry of Materials, 2002. 14(2): p. 480-482.
    24.Yoon, K.H., Y.S. Cho, and D.H. Kang, Molten salt synthesis of lead-based relaxors. Journal of Materials Science, 1998. 33(12): p. 2977-2984.
    25.Liu, Y.K., et al., Synthesis and characterization of rutile SnO2 nanorods. Advanced Materials, 2001. 13(24): p. 1883-1887.
    26.Wang, Y. and J.Y. Lee, Molten salt synthesis of tin oxide nanorods: Morphological and electrochemical features. Journal of Physical Chemistry B, 2004. 108(46): p. 17832-17837.
    27.Wang, W.Z., et al., Preparation of smooth single-crystal Mn3O4 nanowires. Advanced Materials, 2002. 14(11): p. 837-840.
    28.Wang, W.Z., et al., Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant. Materials Research Bulletin, 2002. 37(6): p. 1093-1100.
    29. Kalyani, V., et al., Hydrothermal Synthesis of SrTiO3 Mesocrystals: Single Crystal to Mesocrystal Transformation Induced by Topochemical Reactions. Crystal Growth & Design, 2012. 12(9): p. 4450-4456.
    30.Li, B.-r., et al., Template-free fabrication of pure single-crystalline BaTiO3 nano-wires by molten salt synthesis technique. Ceramics International, 2014. 40(1): p. 73-80.
    31.Xu, C.Y., et al., Synthesis and characterization of single-crystalline alkali titanate nanowires. Journal of the American Chemical Society, 2005. 127(33): p. 11584-11585.
    32.Li, L., et al., Wire Structure and Morphology Transformation of Niobium Oxide and Niobates by Molten Salt Synthesis. Chemistry of Materials, 2009. 21(7): p. 1207-1213.
    33.Sikalidis, C., Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications. 2011: InTech. 520.
    34.Zaremba, T., Investigation on synthesis and microstructure of potassium tetratitanate. Journal of Thermal Analysis and Calorimetry, 2008. 91(3): p. 911-913.
    35.Yin, S., et al., Phase transformation of protonic layered tetratitanate under solvothermal conditions. Journal of Materials Chemistry, 1999. 9(5): p. 1191-1195.
    36.Izawa, H., S. Kikkawa, and M. Koizumi, Ion-exchange and dehydration of layered titanates, Na2Ti3O7 and K2Ti4O9. Journal of Physical Chemistry, 1982. 86(25): p. 5023-5026.
    37.Bao, N.Z., et al., Study on the formation and growth of potassium titanate whiskers. Journal of Materials Science, 2002. 37(14): p. 3035-3043.
    38. Kang, S.O., B.H. Park, and Y.I. Kim, Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction. Crystal Growth & Design, 2008. 8(9): p. 3180-3186.
    39.Kim, T.W., et al., Ferroelectric BaTiO3 films with a high-magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical vapor deposition. Applied Surface Science, 1995. 90(1): p. 75-80.
    40.Lee, S., C.A. Randall, and Z.K. Liu, Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. Journal of the American Ceramic Society, 2007. 90(8): p. 2589-2594.
    41.Xu., Y.H., Ferroelectric Materials and Their Application. 1991, New York: North-Holland.
    42.Polking, M.J., et al., Ferroelectric order in individual nanometre-scale crystals. Nature Materials, 2012. 11(8): p. 700-709.
    43.劉國雄, 工程材料科學. 2006: 全華科技圖書股份有限公司.
    44.Sahoo, G.K., Synthesis and characterization of BaTiO3 Prepared by
    Molten Salt Synthesis Method. 印度國立理工學院魯爾克拉分校陶瓷工程學系碩士論文.
    45.Szwarcman, D., et al., Ferroelectric effects in individual BaTiO3 nanocrystals investigated by electron holography. Physical Review B, 2012. 85(13).
    46.Suyal, G., et al., Piezoelectric response and polarization switching in small anisotropic perovskite particles. Nano Letters, 2004. 4(7): p. 1339-1342.
    47.Aladwani, A., O. Aldraihem, and A. Baz, Single Degree of Freedom Shear-Mode Piezoelectric Energy Harvester. Journal of Vibration and Acoustics-Transactions of the Asme, 2013. 135(5).
    48. Newnham, R.E., D.P. Skinner, and L.E. Cross, CONNECTIVITY AND PIEZOELECTRIC-PYROELECTRIC COMPOSITES. Materials Research Bulletin, 1978. 13(5): p. 525-536.
    49.Lang, S.B., E. Ringgaard, and Ieee, Measurements of the thermal, dielectric, piezoelectric, pyroelectric and elastic properties of porous PZT samples, in Ceidp: 2009 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2009. p. 714-717.
    50.Arlt, G., D. Hennings, and G. Dewith, Dielectric-properties of fine-grained barium-titanate ceramics. Journal of Applied Physics, 1985. 58(4): p. 1619-1625.
    51.Sundaresan, A. and C.N.R. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today, 2009. 4(1): p. 96-106.
    52.Herbert, A.J.M.a.J.M., Electroceramics: Materials, Properties, Applications 2003: Wiley; 2 edition.
    53.林振華, 電子材料. 2001: 全華科技圖書股份有限公司.
    54.陳瀅如, 添加微細粉對鈦酸鉛鍍膜製程與特性之研究. 清華大學碩士論文, 1998.
    55.Im, B., et al., Growth of single crystalline barium titanate nanowires from TiO 2 seeds deposited on conducting glass. Nanotechnology, 2010. 21(42): p. 425601.
    56.Fu, D., M. Itoh, and S.-y. Koshihara, Invariant lattice strain and polarization in BaTiO3-CaTiO3 ferroelectric alloys. Journal of Physics-Condensed Matter, 2010. 22(5).
    57.Buscaglia, M.T., et al., Ferroelectric BaTiO3 Nanowires by a Topochemical Solid-State Reaction. Chemistry of Materials, 2009. 21(21): p. 5058-5065.
    58.Zhu, D. and W. Ma, Effect of mechanical stress on phase stability and polarization states in ferroelectric barium titanate and lead titanate. Ceramics International, 2014. 40(5): p. 6647-6654.
    59.Schilling, A., et al., Morphological control of polar orientation in single-crystal ferroelectric nanowires. Nano Letters, 2007. 7(12): p. 3787-3791.
    60.Lubk, A., et al., Electromechanical Coupling among Edge Dislocations, Domain Walls, and Nanodomains in BiFeO3 Revealed by Unit-Cell-Wise Strain and Polarization Maps. Nano Letters, 2013. 13(4): p. 1410-1415.
    61.Venkatesan, M., C.B. Fitzgerald, and J.M.D. Coey, Unexpected magnetism in a dielectric oxide. Nature, 2004. 430(7000): p. 630-630.
    62.溫少瑜, 以熔鹽合成法製備鈦酸鋇奈米線及其鐵磁與電容特性之研究, in 國立清華大學碩士論文2012, 溫少瑜: 國立清華大學
    63.Wang, M., G.L. Tan, and Q.J. Zhang, Multiferroic properties of nanocrystalline PbTiO3 ceramics. Journal of the American Ceramic Society, 2010. 93(8): p. 2151-2154.
    64.M.Grundmann, Physics of semiconductors. 2001.
    65.Singh, B., Global Warming - Impacts and Future Perspective. 2012.
    66.B.Jaffe, W.R.C., H. Jaffe, Piezoelectric ceramics. London: Academic Press.
    67.Karaki, T., et al., Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007. 46(4-7): p. L97-L98.
    68.Yako, O., et al., Enhanced piezoelectric properties of barium titanate single crystals by domain engineering, in Electroceramics in Japan Viii, M. Miyayama, et al., Editors. 2006. p. 23-26.
    69.王廷鈞, 鈦酸鉀前驅物對鈦酸鋇奈米線合成及壓電性值的影響. 國立清華大學碩士論文, 2013.
    70.Jungk, T., A. Hoffmann, and E. Soergel, Influence of the inhomogeneous field at the tip on quantitative piezoresponse force microscopy. Applied Physics a-Materials Science & Processing, 2007. 86(3): p. 353-355.
    71.Koka, A., Z. Zhou, and H.A. Sodano, Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy & Environmental Science, 2014. 7(1): p. 288-296.
    72.Xu, S., B.J. Hansen, and Z.L. Wang, Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 2010. 1.
    73.Jung, J.H., et al., Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator. Acs Nano, 2011. 5(12): p. 10041-10046.
    74.Bogue, R., Energy harvesting and wireless sensors: a review of
    recent developments. Sensor Review, 2009. 29(3): p. 194.
    75.Schrott, A.G., et al., Ferroelectric field-effect transistor with a SrRuxTi1-xO3 channel. Applied Physics Letters, 2003. 82(26): p. 4770-4772.
    76.He, Y., et al., Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning. Sensors and Actuators B-Chemical, 2010. 146(1): p. 98-102.
    77.Wang, L., et al., DC humidity sensing properties of BaTiO3 nanofiber sensors with different electrode materials. Sensors and Actuators B-Chemical, 2011. 153(2): p. 460-464.
    78.Lee, W.W., et al., Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44(4): p. 660-669.
    79.Yang, J., et al., Ultrathin BaTiO3 Nanowires with High Aspect Ratio: A Simple One-Step Hydrothermal Synthesis and Their Strong Microwave Absorption. Acs Applied Materials & Interfaces, 2013. 5(15): p. 7146-7151.
    80.Kang, S.-O., B.H. Park, and Y.-I. Kim, Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction. Crystal Growth & Design, 2008. 8(9): p. 3180-3186.
    81.Liu, L., et al., Temperature-induced solid-phase oriented rearrangement route to the fabrication of NaNbO3 nanowires. Chemical Communications, 2010. 46(3): p. 427-429.
    82.Wang, J.X., et al., Kirkendall Effect and Lattice Contraction in Nanocatalysts: A New Strategy to Enhance Sustainable Activity. Journal of the American Chemical Society, 2011. 133(34): p. 13551-13557.
    83.Wang, W., M. Dahl, and Y. Yin, Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chemistry of Materials, 2013. 25(8): p. 1179-1189.
    84.Yang, Y., et al., Influence of temperature on evolution of coaxial ZnO/Al2O3 one-dimensional heterostructures: From core-shell nanowires to spinel nanotubes and porous nanowires. Journal of Physical Chemistry C, 2008. 112(11): p. 4068-4074.
    85.Wang, Z., J. Hu, and M.-F. Yu, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Applied Physics Letters, 2006. 89(26).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE