簡易檢索 / 詳目顯示

研究生: 陳彥文
論文名稱: 利用電化學掃瞄穿隧式顯微鏡操縱術發展奈米光罩
Development of nanometer-scale mask by EC-STM manipulation
指導教授: 黃惠良
H. L. Hwang
黃英碩
I. S. Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 48
中文關鍵詞: 金屬氧化金屬沈積奈米點奈米微影術掃瞄穿隧式顯微鏡電化學
外文關鍵詞: metal oxidation, metal deposition, nano dot, nanolithography, Scanning Tunneling Microscope, electrochemity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代半導體工業已經發展到了奈米的尺度了,其中最常見的就是場效電晶體(FET),電晶體的閘極間距已達到90nm,但相對於FET 的展,光學微影的進度卻很少,尤其在50nm 以下,對於光學微影已經是達到了物理極限,但是對於元件製作才是另一個新世界的開始,世人都在期待一個革命性的的技術,以達成奈米元件製作的工具。
    掃瞄穿隧式電子顯微鏡(STM)不僅是觀測微小尺度下物體的工具,還有其他相當多的應用,本論文為利用掃瞄穿隧電子顯微鏡來製作奈米級的結構,即俗稱的SPM nanolithography,其中分為兩個部分:(1) 於大氣中利用探針在金屬(Ti)表面加上相對於探針為正的偏壓,讓探針所在處產生氧化物,這種氧化過程稱為電場導致氧化反應(Field-induced oxidation),若再加上化學濕蝕刻方法將未氧化的鈦去除,藉由此氧化反應可以製做出奈米尺度的圖樣,如此即可獲得類似光學微影中正光阻的凸出圖樣。並討論其形成大小、形狀和脈衝電壓、持續時間的關係;(2)以及在雲母表面上鍍200nm 的金薄膜,於水溶液中利用探針上吸附的銅原子,由於銅和金之間的吸引力比銅和銅之間的吸引力還強,藉著輕微的機械性碰撞(jump-to-contact),讓銅原子留在金的表面上,形成奈米級的結構。
    不論在大氣(氧化)系統還是水溶液(還原),依照理論的預估以及實驗的對照,所製做出的奈米結構都已經達到我們所期望的,對於其尺寸、分佈、位置的控制,都能在我們的掌握下進行。STM 奈米微影技術可應用於各種不同的環境、基材,不僅能觀測在奈米尺度下發生的現象,也對於在未來的奈米光電元件製作,提供了一個有效、自由度高的利器。


    The transistor has evolved into the nanoscale device. The most common form is a simple switch the field effect transistor (FET). The modern FET qualifies as a nanoscale device since the length of the gate region is only 90nm .The FET has slowly evolved through improvement in optical lithography. We all await the technology set that will push these devices below the classical limits and on to the world of devices that relies on the quantum behavior of electrons. That transition will take place when the device dimensions are reduced below 50nm. It is a world beyond the reach for optical lithography. Devices with these dimensions will require a revolutionary change in the fabrication process.
    Scanning Tunneling Microscope (STM) not only the observed tool, but also have a lot of application. In this paper, we use STM for fabrication nanoscale structures. It’s also called SPM nanolithography. The paper divided into two parts: (1) Using the STM tip to oxidize metal (Ti) film in the atmosphere. Appling the positive pulse to the
    sample, and the position of tip will have oxide growth. This oxidation process is Field-induced oxidation. After the field-induced oxidation of titanium, and remove the
    unoxidation regions by 5% HF. The titanium dioxide become the metal mask, likes the positive photoresist in optical lithography. And we discus the structure with oxidation parameter ;(2) Using the mica coating with 200nm gold film, and let STM tip covered with copper atom. The interaction between copper and gold is stronger than the interaction between copper and copper. By a little mechanical contact
    (jump-to-contact), the copper atoms will stay on the gold surface.
    No matter in atmosphere (oxidation) or solution (reduction) system. We can get nano-structure under the size control, distribution control and position control by STM. SPM nanolithography can applied for difference environments and substrate.
    Not only can observe the phenomenon in nanoscale, but also provide a powerful tool for the nanodevice fabrication.

    Acknowledgement 摘要 Abstract Contents Chapter One Introduction 1.1 Scanning Tunneling Microscope 1 1.2 Scanning Probe Lithography (SPL) 3 Reference 8 Chapter Two Mechanism 2.1 Tip-Induced Oxidation 10 2.1.1 Water Bridge Models 10 2.1.2 Field Induced Oxidation Models 12 a. Cabrera-Mott model 12 b. Avourios-Hertel-Martel model 14 c. Empirical power-of-time model 15 2.2 Metal Deposition by EC-STM 16 2.2.1 Electrochemical Scanning Tunneling Microscope (EC- STM) 16 2.2.2 Metal deposition by jump-to-contact method 18 Reference 20 Chapter Three Experiment 3.1 Experiment System 3.1.1 Sample Preparation 21 3.1.2 Tip Preparation 21 3.1.3 Experiment Instrumentation 24 3.2 Experimental 3.2.1 Experiment Flow Chart 25 3.2.2 Experiment Procedures 26 Reference 29 Chapter Four Experiment Results and Discussion 4.1 Titanium Oxidation by STM 30 4.1.1 Voltage Inference 32 4.1.2 Duration Time Inference 34 4.1.3 Theoretical Model Fitting 35 4.1.4 Pattern Formation 37 4.2 Copper Deposition by EC-STM 4.2.1 Electrochemical Copper Deposition 38 4.2.2 Cooper deposition on Gold (111) by jump-to-contact method 40 Chapter Five Conclusions 5.1 Titanium Oxidation by STM 46 5.2 Copper deposit by EC-STM 47 Reference 48

    Reference
    1. G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982).
    2. J. Bardeen, Phys. Rev. Lett. 6(2), 57 (1961)
    3. K. Kurihara, H. Namatsu, M. Nagase and T. Makino, Microelectronic Engineering
    35 (1997) 261
    4. Henry. Smith, M.L. Schattenburg, S.D. Hector, J.Ferrera, E.E. Moon, I.Y.Yang,
    Microelectronic Engineering 32 (1996) 143
    5. Electrochemical Micromachining of the UV-LIGA’s Microstructure,(1999) 4
    6. S. Minne. J. Adams. G. Yaralioglu. S. Manalis. A. Atalar. C. Quaate. Appl. Phys.
    Lett. 73 1742 (1998)
    7. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Appl.
    Phys. Lett. 56 2001 (1990)
    8. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, Appl. Phys. Lett. 57 2437
    (1990)
    9. J. A. Dagata, W. Tseng, J. Bennett, E.A. Dobisz, J. Schneir, H. H. Harary, C. J.
    Evans, J. Vac. Sci. Technol. A 10, 2105 (1992).
    10. J. A. Dagata, J. Schneir, H. H. Harary, W. Tseng, J. Bennett, J. Vac. Sci. Technol.
    B 9, 1384 (1991).
    11. P. M. Campbell, E. S. Snow and P. J. McMarr, Solid-State Electronics, 37
    (1994)583
    12. E. S. Snow, P. M. Campbell and P. J. McMarr, Appl. Phys. Lett. 63 749 (1993)
    13. F. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, Appl.
    Phys. Lett. 18 2429 (1999)
    14. E.S.Snow, D.Park, P.M.Campbell, Appl. Phys. Lett., 69,(1996) 269.
    15. Dawen Wang, Liming Tsau, K.L.Wang, Appl. Phys. Lett., 67,(1995) 1295.
    9
    16. Marco Rolandi, Calvin F. Quate and Hongjie Dai, Adv. Mater 14 No3(2002) 191
    17. K. Matsumoto, Proceedings of The IEEE, vol.85, (1997), 612
    18. K. Matsumoto, S. Takahashi, M. Ishii, Masakatsu Hoshi, Akira Kurokawa, Shingo
    Ichimura and Atsushi Ando, J. J. Appl. Phys, 34 (1995) 1387
    19. K.Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian and J. S. Harris, Appl.
    Phys. Lett. 68 (1996) 34
    20. H. Martin, P. Carro, A. Hernandez Creus, S. Gonzalez, R. C. Salvarezza, and A. J.
    Arvia, Langmuir 13 100-110 (1997)
    21. A. S. Dakkouri, Solid State Ionics 94 (1997) 99-114
    22. Wieland Zahn, Antje Zosch, Hans Dieter Scnabel, Anal Bioanal Chem 375(2003)
    871-874
    23. A. Gonzalez, R. C. Bhardwaj, J. O’M. Bockris, J. Appl. Electrochem, 23 (1993)
    531
    24. R. Sonnenfeld and P. K. Hansma, Science 232 (1986) 211
    25. W. Li, J. A. Virtanen, R. M. Penner, Appl. Phys. Lett. 60,1181 (1992).
    26. J. R. LaGraff and A. A. Gewirth, ibid. 98, 11246 (1994).
    27. R. Ullmann, T. Will, D. M. Kolb, Chem. Phys. Lett. 209, 238 (1993).
    28. Bar. Bunsenges. Phys. Chem. 99, 1414 (1995)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE