研究生: |
黃日鉉 |
---|---|
論文名稱: |
Inconel 625超合金於超臨界水環境下之腐蝕行為研究 Corrosion Behavior of Inconel 625 Superalloy in Supercritical Water |
指導教授: |
開執中
陳福榮 葉宗洸 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 超臨界水 、腐蝕 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超臨界水反應器(supercritical water-cooled reactor, SCWR)為第四代核能反應器之一,其操作環境高於水的臨界點,溫度必須超過374℃且壓力高於22.1 MPa。相對於現今輕水式反應器,超臨界水反應器的設計簡化使得安全性提高且降低成本,且超臨界水反應器操作在相當高溫的環境,因而提供相當高的熱效率,大約為45%(現今輕水式反應器熱效率約為33%)。
超臨界水所表現出的物理性質和溫度低於臨界點以下的液態水有很大的不同,因此材料在超臨界水環境下所表現的腐蝕行為成為一值得研究的題目。而本實驗將Inconel 625試片置於高壓釜內,實驗溫度測定於600℃,壓力在24.8 MPa (3600psi),入水口溶氧濃度為8.3 ppm,透過腐蝕前後試片的單位面積質量改變量與微結構分析探討材料的腐蝕特性。於600℃之超臨界水環境下,相較於304L,Inconel 625在單位面積質量變化上並無明顯改變,利用300、600及1000小時的單位面積質量變化量得到一趨勢線,w^2.21=1.4×10^-5 t,符合拋物線律。另在表面發現8~9μm大小之孔蝕,推測孔蝕與原有的(Nb,Ti)C析出相有關。進一步分析得知氧化層呈現兩層的結構,外層為spinel Ni(Cr,Fe)2O4,內層為spinel Ni(Cr,Fe)2O4加上Cr2O3組成緻密連續的氧化層。經過輻射照射15dpa後再經過300小時600℃的腐蝕實驗後,氧化層與未經輻照之試片相比並無明顯變化,但母材之γ”有巨凝現象發生,在電子束入射方向B=[001]方向的長度約為原γ”的13倍。
參考文獻
[1]謝得志, ”核能溝通”, 於清華大學演講, (4/3/2009)
[2]Supercritical Water Reactor (SCWR) Survey of Materials Experience and R&D Needs to Assess Viability, INEEL/EXT-03-00693 Revision 1, September 2003.
[3]G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, “Corrosion and stress corrosion cracking in supercritical water”, Journal of Nuclear Materials 371(2007) 176–201.
[4]P. Kritzer, in: SCR-2000, 6–8 November, 2000, Tokyo.
[5]K. Johnston, C. Haynes, Am. Inst. Chem. Eng. J. 33, (1987) 2017.
[6]L. Tan, Y. Yang, T.R. Allen, Corrosion Sci., in press.S. Kasahara, GENES4/ANP2003, paper 1132, Kyoto,Japan, September, 2003.
[7]J. Jang et al., in: Proceedings of ICAPP’05, Seoul, Korea,Paper 5136, May, 2005.
[8]J. Kaneda, et al., in: Proceedings of ICAPP’05, Seoul, Korea,Paper 5594, May, 2005.
[9]Pantip Ampornrat, Gary S. Was,”Oxidation of ferritic–martensitic alloys T91, HCM12A and HT-9 in supercritical water”, Journal of Nuclear Materials 371 (2007) 1–17.
[10]B. Dooley, B. Larkin, L. Webb, F. Pocock, A. Bursik, Oxygenated treatment for fossil plants Proceedings of 16th International Water Conference, vol. 53, Engineers Society of Western Pennsylvania, 1992.
[11]B. Dooley, J. Mathews, R. Pate, J. Taylor, Ultrapure-water 48(July/August) (1995).
[12]G.S. Was, T.R. Allen, Time, temperature, and dissolved oxygen dependence of oxidation of austenitic and ferritic–martensitic alloys in supercritical water, in: Proceeding of ICAPP 2005, American Nuclear Society, 2005.
[13]G.S. Was, S. Teysseyre, and Z. Jiao,” Corrosion of Austenitic Alloys in Supercritical Water”, Corrosion, Vol. 62, No. 11 (2006) 989-1005.
[14]Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production Nuclear Energy Research Initiative Project 2001-001 Westinghouse Electric Co. Award Number: DE-FG07-02SF22533 Final Report – 12th Quarterly Report.
[15]L. Tan, X. Ren, K. Sridharan, T.R. Allen, ”Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants”, Corrosion Science 50 (2008) 3056–3062.
[16]Mingcheng Sun, XinqiangWu, Zhaoen Zhang, En-Hou Han, “Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water”, The Journal of Supercritical Fluids 47 (2008) 309-317.
[17]Donald R. Olander, Fundamental aspects of nuclear reactor fuel elements, National Technical Information Service, TID-26711-P1, 1976.
[18]楊文斗, “反應堆材料學”, 原子能出版社, (2000) p.144.
[19]E.E.Bloom, W.R.Martin, J.O.Stiegler, and.R.Weir, J.Nucl.Nater., 22:68(1967).
[20]E.E. Bloom and J.O. Stiegler, in ASTM Special Technical Publication 484,American Society for Testing Materials,Philadelphia,1970,P451.
[21]W.K. Appleby et al., in Radiation-Induced Voids in Metals, Albany,N.Y.,James W. Corbett and Louis C. Ianniello (Eds.), USAEC Symposium Seres,CONF-710601, (1971) p.166.
[22]D.Kramer et al., in ASTM Special Technical Publication 484, American Society for Testing and aterials, Philadelphia,(1970) p.509.
[23]H.R. Brager and J.L. Straalsund, J.Nucl.Mater., 46 (1973) 134.
[24]Seger, On the Theory of Radiation Damage and Radiation Hardening, in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva,1958, Vol.6 ,United Nations, New York, 1958, 250.
[25]T.t. Claudson, R.W. Barker, and Fish. Nucl. Appl.Technol, 9:10 (1970).
[26]S. D. Harkness and Che-Yu Li, Met Trans., (1971) 1457.
[27]萬發榮,“金屬材料的輻照損傷”, 科學出版社, 1993.
[28]M. Saito, A. Hasegawa, S.Ohtsuks, K. Abe, J. Nucl. Mater. 1562 (1998) 258-263.
[29]C. T. Sims, and W. C. Hagel, The Superalloys, John Wiley & Sons, New York, 1972.
[30]N. F. Mott and F. R. N. Nabarro, Report of the Conference on Strength of Solids, Physical Society, (1948)1-19.
[31]R. M. N. Pelloux and N. J. Grant, Trans. Met. Soc. AIME, 218 (1960) 232-237.
[32]R. L. Fleischer, Acta Met., 11 (1963) 203-209.
[33]R. G. Davies and N. S. Stoloff, Trans. Met. Soc. AIME, 233 (1965) 714-719.
[34]N. S. Stoloff and R. G. Davies, Prog. Mat. Sci., 13, No. 1, (1966) 3-84.
[35]P. H. Thornton and R. G. Davies, Met. Trans., 1, (1970) 549-550.
[36]P. Beardmore, R. G. Davies, and T. L. Johnston, Trans. Met. Soc. AIME, 245, (1969) 1537-1545.
[37]R. G. Davies and T. L. Johnston, Ordered Alloys: Structural Applications and Physical Metallurgy, Claitors, Baton Rouge, Louisiana, (1970) 447-470.
[38]S. M. Copley and B. H. Kear, Trans. Met. Soc. AIME, 239, (1967) 984-992.
[39]C. L. Corey and B. Lisowsky, Trans. Met. Soc. AIME, 239, (1967) 239-243.
[40]G. R. Leverant, M. Gell, and S. W. Hopkins, Proc. Second Int. Conf. Strength Met. Alloys, 3, (1970) 1141-1144.
[41]F.F. Barder, Discussion of : Eiselstein, H.L., in Advances in the Technology of Stainless Steels and Related Alloys, STP 369, ASTM, Philadelphia, Pa., (1965) 78-79.
[42]H.J.Wagner, and A.M.Hall, “Physical Metallurgy of Alloy 718”, DMIC Report 217, Battelle Memorial Institute, Columbus, Ohio, (June 1, 1965).
[43]J.F. Bader, Metal Progress, 81 (May, 1962) 72-76.
[44]R.F. Decker, and J.R. Mihalisin, Trans. ASM, 62, (1969) 481-489.
[45]D.F. Paulonis, F.M. Oblak, and D.S. Duvall, Trans. ASM, 62, (1969) 611-622.
[46]I. Kirman and D.H. Warrington, Met. Trans., 1, (1970) 2667-2675.
[47]E.A. Loria, “Superalloys 718, 625, 706 and various derivatives” (1994).
[48]Vani Shankar, ”Microstructure and mechanical properties of Inconel 625 superalloy”, Journal of Nuclear Materials 288 , (2001) 222–232.
[49]J. Mittra, “Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625”, Scripta Materialia 49, (2003)1209–1214.
[50]M. Sundararaman, “Pricipitation of an intermetallic phase with Pt2Mo-type structure in alloy 625”, Metallurgical And Materials Transactions A (1999).
[51]J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985).
[52]科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心.
[53]汪建民, 杜正恭, 材料分析, 中國材料科學學會 (1998).
[54]Hani M. Tawancy, ”Practical engineering failure analysis”, (2004) 381.
[55]J. Robertson, The mechanism of high temperature aqueous corrosion of steel, Corros. Sci. 29 (1989) 1275–1291.
[56]M.J. Graham, R.J. Hussey, Transport in growing oxide films, in: M.A. Dayananda, S.J. Rothman, W.E. King (Eds.), Oxidation of Metals and Associated Mass Transport, The Metallurgical Society, Inc., Warrendale, PA, 1987, p. 85.
[57]X. Ren, K. Sridharan, T.R. Allen, Corrosion behavior of alloys 625 and 718 in supercritical water, Corrosion 63 (2007) 603–612.
[58]P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988).
[59]D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996).
[60]R. Meyer, J. Pillot, B. Andries, Powder Met, 1971, 561-581.